Skip to main content

Discretization tools for finite volume and inverse problems

Project description

Discretize Logo

discretize

Latest PyPI version Latest conda-forge version MIT license Azure pipelines build status Coverage status https://zenodo.org/badge/DOI/10.5281/zenodo.596411.svg https://img.shields.io/discourse/users?server=http%3A%2F%2Fsimpeg.discourse.group%2F https://img.shields.io/badge/Slack-simpeg-4B0082.svg?logo=slack https://img.shields.io/badge/Youtube%20channel-GeoSci.xyz-FF0000.svg?logo=youtube

discretize - A python package for finite volume discretization.

The vision is to create a package for finite volume simulation with a focus on large scale inverse problems. This package has the following features:

  • modular with respect to the spacial discretization

  • built with the inverse problem in mind

  • supports 1D, 2D and 3D problems

  • access to sparse matrix operators

  • access to derivatives to mesh variables

https://raw.githubusercontent.com/simpeg/figures/master/finitevolume/cell-anatomy-tensor.png

Currently, discretize supports:

  • Tensor Meshes (1D, 2D and 3D)

  • Cylindrically Symmetric Meshes

  • QuadTree and OcTree Meshes (2D and 3D)

  • Logically Rectangular Meshes (2D and 3D)

  • Triangular (2D) and Tetrahedral (3D) Meshes

Installing

discretize is on conda-forge

conda install -c conda-forge discretize

discretize is on pypi

pip install discretize

To install from source

git clone https://github.com/simpeg/discretize.git
python setup.py install

Citing discretize

Please cite the SimPEG paper when using discretize in your work:

Cockett, R., Kang, S., Heagy, L. J., Pidlisecky, A., & Oldenburg, D. W. (2015). SimPEG: An open source framework for simulation and gradient based parameter estimation in geophysical applications. Computers & Geosciences.

BibTex:

@article{cockett2015simpeg,
  title={SimPEG: An open source framework for simulation and gradient based parameter estimation in geophysical applications},
  author={Cockett, Rowan and Kang, Seogi and Heagy, Lindsey J and Pidlisecky, Adam and Oldenburg, Douglas W},
  journal={Computers \& Geosciences},
  year={2015},
  publisher={Elsevier}
}

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

discretize-0.8.3.tar.gz (1.1 MB view details)

Uploaded Source

Built Distributions

discretize-0.8.3-cp310-cp310-win_amd64.whl (887.9 kB view details)

Uploaded CPython 3.10 Windows x86-64

discretize-0.8.3-cp39-cp39-win_amd64.whl (939.7 kB view details)

Uploaded CPython 3.9 Windows x86-64

discretize-0.8.3-cp38-cp38-win_amd64.whl (945.1 kB view details)

Uploaded CPython 3.8 Windows x86-64

File details

Details for the file discretize-0.8.3.tar.gz.

File metadata

  • Download URL: discretize-0.8.3.tar.gz
  • Upload date:
  • Size: 1.1 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.8

File hashes

Hashes for discretize-0.8.3.tar.gz
Algorithm Hash digest
SHA256 1f32ace5d43e94f7f42381a67f0d3f5a7f2c066ef47b0da5ddc6c621622a38ff
MD5 89d53fad74d9c4ec17ab82c15d91808b
BLAKE2b-256 3f48d047d6acdf1f91fe93d783b47d2ce67b455874f8add99e0447585321eba5

See more details on using hashes here.

Provenance

File details

Details for the file discretize-0.8.3-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for discretize-0.8.3-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 166f6c90885829d042c648ab99163fe492f9d848f4dca44de2335fc29664133c
MD5 3fc52d18f1e4393193f7ab2d46e0784b
BLAKE2b-256 593957921fd599ce53b963f7a71c3629027b408a7420b92a883471ab57eed5d3

See more details on using hashes here.

Provenance

File details

Details for the file discretize-0.8.3-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: discretize-0.8.3-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 939.7 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.13

File hashes

Hashes for discretize-0.8.3-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 78521ea6a24ff73fbe63126b83adff84c2e9b92b193cb9428c19e2ddcca5b91a
MD5 dbbd7c99d1e3c1be80ebdc88b2115c43
BLAKE2b-256 088789377e0d5a5bad63cbc09cbb1823998da8c050e1a43e202f3f82ed2b0144

See more details on using hashes here.

Provenance

File details

Details for the file discretize-0.8.3-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: discretize-0.8.3-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 945.1 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.10

File hashes

Hashes for discretize-0.8.3-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 883033e86faa485b1477fe17353b5efdd4e098ba5f1ef44066a547092238cd63
MD5 50af0acdaebcebf45e7fd3d2f3d84e71
BLAKE2b-256 29fa2988db709e104e1e526c4aa300b0c0d1751b67060605ae871372b0ae8727

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page