Skip to main content

Discretization tools for finite volume and inverse problems

Project description

Discretize Logo

discretize

Latest PyPI version Latest conda-forge version MIT license Azure pipelines build status Coverage status https://zenodo.org/badge/DOI/10.5281/zenodo.596411.svg https://img.shields.io/discourse/users?server=http%3A%2F%2Fsimpeg.discourse.group%2F https://img.shields.io/badge/Slack-simpeg-4B0082.svg?logo=slack https://img.shields.io/badge/Youtube%20channel-GeoSci.xyz-FF0000.svg?logo=youtube

discretize - A python package for finite volume discretization.

The vision is to create a package for finite volume simulation with a focus on large scale inverse problems. This package has the following features:

  • modular with respect to the spacial discretization

  • built with the inverse problem in mind

  • supports 1D, 2D and 3D problems

  • access to sparse matrix operators

  • access to derivatives to mesh variables

https://raw.githubusercontent.com/simpeg/figures/master/finitevolume/cell-anatomy-tensor.png

Currently, discretize supports:

  • Tensor Meshes (1D, 2D and 3D)

  • Cylindrically Symmetric Meshes

  • QuadTree and OcTree Meshes (2D and 3D)

  • Logically Rectangular Meshes (2D and 3D)

  • Triangular (2D) and Tetrahedral (3D) Meshes

Installing

discretize is on conda-forge

conda install -c conda-forge discretize

discretize is on pypi

pip install discretize

To install from source

git clone https://github.com/simpeg/discretize.git
python setup.py install

Citing discretize

Please cite the SimPEG paper when using discretize in your work:

Cockett, R., Kang, S., Heagy, L. J., Pidlisecky, A., & Oldenburg, D. W. (2015). SimPEG: An open source framework for simulation and gradient based parameter estimation in geophysical applications. Computers & Geosciences.

BibTex:

@article{cockett2015simpeg,
  title={SimPEG: An open source framework for simulation and gradient based parameter estimation in geophysical applications},
  author={Cockett, Rowan and Kang, Seogi and Heagy, Lindsey J and Pidlisecky, Adam and Oldenburg, Douglas W},
  journal={Computers \& Geosciences},
  year={2015},
  publisher={Elsevier}
}

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

discretize-0.9.0.tar.gz (1.1 MB view details)

Uploaded Source

Built Distributions

discretize-0.9.0-cp310-cp310-win_amd64.whl (890.0 kB view details)

Uploaded CPython 3.10 Windows x86-64

discretize-0.9.0-cp39-cp39-win_amd64.whl (941.8 kB view details)

Uploaded CPython 3.9 Windows x86-64

discretize-0.9.0-cp38-cp38-win_amd64.whl (947.3 kB view details)

Uploaded CPython 3.8 Windows x86-64

File details

Details for the file discretize-0.9.0.tar.gz.

File metadata

  • Download URL: discretize-0.9.0.tar.gz
  • Upload date:
  • Size: 1.1 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.11

File hashes

Hashes for discretize-0.9.0.tar.gz
Algorithm Hash digest
SHA256 4f1f2d0e88c98a302c660ab2a6836c0b6c43994dc02c8f5f9318d3815529fcb0
MD5 5d9619771dda8bd1daa9fbfc7c199991
BLAKE2b-256 0c101b14ce197fdb90e75da992d41590b1c20cf4ac6317e120a22f474d889bb5

See more details on using hashes here.

File details

Details for the file discretize-0.9.0-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for discretize-0.9.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 7e7a2304989504c8a177979d3a0431d97f0e3d048ef9095e53b3e7187588820f
MD5 d308a3c77a0a010a2bfae344868ddcc2
BLAKE2b-256 05e17bb18f9d2c0e273279eb8c00ba5e041a81bc3646b3f89cbcb946beda36ad

See more details on using hashes here.

File details

Details for the file discretize-0.9.0-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for discretize-0.9.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 6c0fbb58ccd63e9438eb98a12afdafa43caa616d473ed56f56833fc8c5ec71cd
MD5 5de6635b85ad0fa56fab9240c5606f6a
BLAKE2b-256 d4da49f4f3437e9299e12a5a173b15261bd1849dae14e691e539f64274ef3fe7

See more details on using hashes here.

File details

Details for the file discretize-0.9.0-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for discretize-0.9.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 4c92ade13e8fc147d52b7f25157796a1abf27a683c21f5320b65420374e2249e
MD5 2d0bcd71be40bfb609c79c1874982af1
BLAKE2b-256 c3a4a7618519b34f0459824ab4357bbb1951df48a48ec0e38145fef164a28ee5

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page