Skip to main content

DiskANN Python extension module

Project description

diskannpy

DiskANN Paper DiskANN Paper DiskANN Paper DiskANN Main PyPI version Downloads shield License: MIT

Installation

Packages published to PyPI will always be built using the latest numpy major.minor release (at this time, 1.25).

Conda distributions for versions 1.19-1.25 will be completed as a future effort. In the meantime, feel free to clone this repository and build it yourself.

Local Build Instructions

Please see the Project README for system dependencies and requirements.

After ensuring you've followed the directions to build the project library and executables, you will be ready to also build diskannpy with these additional instructions.

Changing Numpy Version

In the root folder of DiskANN, there is a file pyproject.toml. You will need to edit the version of numpy in both the [build-system.requires] section, as well as the [project.dependencies] section. The version numbers must match.

Linux

python3.11 -m venv venv # versions from python3.9 and up should work
source venv/bin/activate
pip install build
python -m build

Windows

py -3.11 -m venv venv # versions from python3.9 and up should work
venv\Scripts\Activate.ps1
pip install build
python -m build

The built wheel will be placed in the dist directory in your DiskANN root. Install it using pip install dist/<wheel name>.whl

Citations

Please cite this software in your work as:

@misc{diskann-github,
   author = {Simhadri, Harsha Vardhan and Krishnaswamy, Ravishankar and Srinivasa, Gopal and Subramanya, Suhas Jayaram and Antonijevic, Andrija and Pryce, Dax and Kaczynski, David and Williams, Shane and Gollapudi, Siddarth and Sivashankar, Varun and Karia, Neel and Singh, Aditi and Jaiswal, Shikhar and Mahapatro, Neelam and Adams, Philip and Tower, Bryan and Patel, Yash}},
   title = {{DiskANN: Graph-structured Indices for Scalable, Fast, Fresh and Filtered Approximate Nearest Neighbor Search}},
   url = {https://github.com/Microsoft/DiskANN},
   version = {0.6.0},
   year = {2023}
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

diskannpy-0.6.0-cp311-cp311-win_amd64.whl (4.5 MB view details)

Uploaded CPython 3.11 Windows x86-64

diskannpy-0.6.0-cp311-cp311-manylinux_2_28_x86_64.whl (91.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.28+ x86-64

diskannpy-0.6.0-cp310-cp310-win_amd64.whl (4.5 MB view details)

Uploaded CPython 3.10 Windows x86-64

diskannpy-0.6.0-cp310-cp310-manylinux_2_28_x86_64.whl (91.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.28+ x86-64

diskannpy-0.6.0-cp39-cp39-win_amd64.whl (4.5 MB view details)

Uploaded CPython 3.9 Windows x86-64

diskannpy-0.6.0-cp39-cp39-manylinux_2_28_x86_64.whl (91.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.28+ x86-64

File details

Details for the file diskannpy-0.6.0-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for diskannpy-0.6.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 f42f6fe1eeabc375a30eb83549fce82a7a9dfd379d1e135f5dbd44ddda496261
MD5 85b46dce96142d8bb3b03ccf2470a4f2
BLAKE2b-256 50b3e59756677e7d0de228857ffba1e62eac9a7c6c8887f36774a6679ddad91c

See more details on using hashes here.

File details

Details for the file diskannpy-0.6.0-cp311-cp311-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for diskannpy-0.6.0-cp311-cp311-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 e5193437ab55869cb62a8122de7550ea7a3710a007061e78bb55bc91a6020313
MD5 7e158f5d4b3d9360c4c27ac9f79531a2
BLAKE2b-256 6560f0e31d4e356c48cb663a5ac8c38af34a98b3cf6104dbf7f32655170a61c8

See more details on using hashes here.

File details

Details for the file diskannpy-0.6.0-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for diskannpy-0.6.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 19331b60453b20212dcc826d1dadaa9bda0a2fbd14f1196ca2fe15eeeacb6796
MD5 4ced92e1bddc01e3ae7c2b56b49c6864
BLAKE2b-256 8441dfa27cd51630ec9728786e4c8ca5377ed098e31f4ada219f650aa04ddf10

See more details on using hashes here.

File details

Details for the file diskannpy-0.6.0-cp310-cp310-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for diskannpy-0.6.0-cp310-cp310-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 e47332bee0d9e631a6684c18c73200bd4ef7d77930acb2c34294a855afbc4e6a
MD5 a2629737f6cbb78af331714903fb2ed1
BLAKE2b-256 233edd0b966e800f2d2e64da6635d1febd15397c58ce0e7d4d2bbefb7829a876

See more details on using hashes here.

File details

Details for the file diskannpy-0.6.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: diskannpy-0.6.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 4.5 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.4

File hashes

Hashes for diskannpy-0.6.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 dd6a3b0c0d8f1f825ec54ef21899b767f369be763143afd945330f4521ede1ac
MD5 e27aefbdfc23c8ac69a4a766b67248b3
BLAKE2b-256 c03000cd713769bc06dcbf9b87e633b80ea49c42b4e766007772502379e567ba

See more details on using hashes here.

File details

Details for the file diskannpy-0.6.0-cp39-cp39-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for diskannpy-0.6.0-cp39-cp39-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 b7a76bf06dc758c6db5c700bd41a36c83938cd2ec826e03f709554dc47a597e7
MD5 78611e0800044adaf4b7c3fe28cff41f
BLAKE2b-256 dfc7ffc4d0479ffa5849a19f01e93df2a3f4510e89b124c4dfb3f5033b88a6e8

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page