Skip to main content

DiskANN Python extension module

Project description

diskannpy

DiskANN Paper DiskANN Paper DiskANN Paper DiskANN Main PyPI version Downloads shield License: MIT

Installation

Packages published to PyPI will always be built using the latest numpy major.minor release (at this time, 1.25).

Conda distributions for versions 1.19-1.25 will be completed as a future effort. In the meantime, feel free to clone this repository and build it yourself.

Local Build Instructions

Please see the Project README for system dependencies and requirements.

After ensuring you've followed the directions to build the project library and executables, you will be ready to also build diskannpy with these additional instructions.

Changing Numpy Version

In the root folder of DiskANN, there is a file pyproject.toml. You will need to edit the version of numpy in both the [build-system.requires] section, as well as the [project.dependencies] section. The version numbers must match.

Linux

python3.11 -m venv venv # versions from python3.9 and up should work
source venv/bin/activate
pip install build
python -m build

Windows

py -3.11 -m venv venv # versions from python3.9 and up should work
venv\Scripts\Activate.ps1
pip install build
python -m build

The built wheel will be placed in the dist directory in your DiskANN root. Install it using pip install dist/<wheel name>.whl

Citations

Please cite this software in your work as:

@misc{diskann-github,
   author = {Simhadri, Harsha Vardhan and Krishnaswamy, Ravishankar and Srinivasa, Gopal and Subramanya, Suhas Jayaram and Antonijevic, Andrija and Pryce, Dax and Kaczynski, David and Williams, Shane and Gollapudi, Siddarth and Sivashankar, Varun and Karia, Neel and Singh, Aditi and Jaiswal, Shikhar and Mahapatro, Neelam and Adams, Philip and Tower, Bryan and Patel, Yash}},
   title = {{DiskANN: Graph-structured Indices for Scalable, Fast, Fresh and Filtered Approximate Nearest Neighbor Search}},
   url = {https://github.com/Microsoft/DiskANN},
   version = {0.6.1},
   year = {2023}
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

diskannpy-0.7.0rc1-cp311-cp311-win_amd64.whl (4.6 MB view details)

Uploaded CPython 3.11 Windows x86-64

diskannpy-0.7.0rc1-cp311-cp311-manylinux_2_28_x86_64.whl (91.4 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.28+ x86-64

diskannpy-0.7.0rc1-cp310-cp310-win_amd64.whl (4.6 MB view details)

Uploaded CPython 3.10 Windows x86-64

diskannpy-0.7.0rc1-cp310-cp310-manylinux_2_28_x86_64.whl (91.4 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.28+ x86-64

diskannpy-0.7.0rc1-cp39-cp39-win_amd64.whl (4.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

diskannpy-0.7.0rc1-cp39-cp39-manylinux_2_28_x86_64.whl (91.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.28+ x86-64

File details

Details for the file diskannpy-0.7.0rc1-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for diskannpy-0.7.0rc1-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 908d47a01919abd91e29bb8d6852568c7e23bca557025973e011b7b124bb88e7
MD5 f7f6bad4acf5c356e73ddfaab26f3231
BLAKE2b-256 3726cb2f10e9cc8eac11f65c08374c1a49865d6a158d497df2f3556ac1daeaf9

See more details on using hashes here.

File details

Details for the file diskannpy-0.7.0rc1-cp311-cp311-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for diskannpy-0.7.0rc1-cp311-cp311-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 941cede5078eecc6d232b4d19a007fe452fac84f6efbf4de5198ae996d7df905
MD5 078516c1232d0fa90f84b64dbb15e891
BLAKE2b-256 26cf92d0209a30247e367e9d2d0dc46082eeb3a6c60fd4d2794cf701ca28d0de

See more details on using hashes here.

File details

Details for the file diskannpy-0.7.0rc1-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for diskannpy-0.7.0rc1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 fab46dff0e5957817e4e94b7cd842026eeebf2144bfef76635944f761f06c30a
MD5 e2309b4aface361f26491679aaa2bb8e
BLAKE2b-256 7f1038b6dd58f4c4e519181de538086219f36700b18acd24416d68a5801f3255

See more details on using hashes here.

File details

Details for the file diskannpy-0.7.0rc1-cp310-cp310-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for diskannpy-0.7.0rc1-cp310-cp310-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 1daac97870cf49e213137d36d010d9b9665cd845fe805074e981aec2b3ff6458
MD5 fad52481873b87878dc0206a240388ec
BLAKE2b-256 af9fe56d75cd5d7803b1d00498f7c91c943ac4b2720f862f1b7287e4c9ee05ba

See more details on using hashes here.

File details

Details for the file diskannpy-0.7.0rc1-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for diskannpy-0.7.0rc1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 0e37ffd5ebc2a5aee7e18177637124bc7efc9f7e5e9c5de72f21aafa5ff4814c
MD5 aff0254eea48680bcb1819a477426201
BLAKE2b-256 01b4a9841a6d5c4dfcfd7b911d740d53880c32b39ea8081e57f9d8db087731d1

See more details on using hashes here.

File details

Details for the file diskannpy-0.7.0rc1-cp39-cp39-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for diskannpy-0.7.0rc1-cp39-cp39-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 937e470a473002c73d44349729f6dcc47773c6db88a5dc821ca1b12ae93757ab
MD5 29e5278d3bd303c9f690acdd80ce07cf
BLAKE2b-256 308e2b25da7e976a6ef7db356b0c93d2b9afdfaa9dcbaa794d44c37ee5b9ddfd

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page