Skip to main content

An object that enables chaining multiple iterables to serve them lazily as a queryset-compatible object.

Project description

https://secure.travis-ci.org/ambv/dj.chain.png

This module provides a way to chain multiple finite iterables for consumption as a QuerySet-compatible object.

Quickstart

Let’s start with an example. Say we have a couple of abstract database models which enables us to reuse fields later on:

class Titled(db.Model):
    title = db.CharField(max_length=100)

    class Meta:
        abstract = True

class Dynamic(db.Model):
    duration = db.PositiveIntegerField()

    class Meta:
        abstract = True

We also have concrete database models that share some of those fields:

class Video(Titled, Dynamic):
    RESOLUTION = (
            (1, '240p'), (2, '320p'), (3, '480p'),
            (4, '720p'), (5, '1080p')
    )

    author = db.CharField(max_length=100)
    resolution = db.IntegerField(choices=RESOLUTION)

class Song(Titled, Dynamic):
    GENRE = (
            (1, 'Country'), (2, 'Folk'), (3, 'Polka'),
            (4, 'Western'), (5, 'World')
    )

    artist = db.CharField(max_length=100)
    genre = db.IntegerField(choices=GENRE)

Our database already contains some data:

>>> Video.objects.all()
[<Video: Psy - Gangnam Style (253 s at 1080p)>,
 <Video: Justin Bieber - Baby (225 s at 720p)>,
 <Video: Lady Gaga - Bad Romance (308 s at 320p)>,
 <Video: Shakira - Waka Waka (211 s at 480p)>]
>>> Song.objects.all()
[<Song: Gotye feat. Kimbra - Somebody That I Used to Know (244 s; Folk)>,
 <Song: Coldplay - Clocks (307 s; Polka)>,
 <Song: Muse - Madness (279 s; Country)>,
 <Song: Florence + The Machine - Spectrum (218 s; Folk)>]

A basic chain

Let’s create a simple chain:

>>> from dj.chain import chain
>>> media = chain(Video.objects.all(), Song.objects.all())

We can collectively call QuerySet-related methods on it:

>>> media.count()
8

We can also filter it further:

>>> list(media.filter(duration__gt=250))
[<Video: Psy - Gangnam Style (253 s at 1080p)>,
 <Video: Lady Gaga - Bad Romance (308 s at 320p)>,
 <Song: Coldplay - Clocks (307 s; Polka)>,
 <Song: Muse - Madness (279 s; Country)>]

Check the cumulative length:

>>> media.filter(duration__gt=250).count()
4

Use indices and slices:

>>> media.filter(duration__gt=250)[1]
<Video: Lady Gaga - Bad Romance (308 s at 320p)>
>>> list(media[3:6])
[<Video: Shakira - Waka Waka (211 s at 480p)>,
 <Song: Gotye feat. Kimbra - Somebody That I Used to Know (244 s; Folk)>,
 <Song: Coldplay - Clocks (307 s; Polka)>]
>>> list(media[1::3])
[<Video: Justin Bieber - Baby (225 s at 720p)>,
 <Song: Gotye feat. Kimbra - Somebody That I Used to Know (244 s; Folk)>,
 <Song: Florence + The Machine - Spectrum (218 s; Folk)>]

Use cumulative sorting and filtering:

>>> list(media.order_by('title'))
[<Video: Justin Bieber - Baby (225 s at 720p)>,
 <Video: Lady Gaga - Bad Romance (308 s at 320p)>,
 <Song: Coldplay - Clocks (307 s; Polka)>,
 <Video: Psy - Gangnam Style (253 s at 1080p)>,
 <Song: Muse - Madness (279 s; Country)>,
 <Song: Gotye feat. Kimbra - Somebody That I Used to Know (244 s; Folk)>,
 <Song: Florence + The Machine - Spectrum (218 s; Folk)>,
 <Video: Shakira - Waka Waka (211 s at 480p)>]
>>> list(media.order_by('-duration').filter(duration__lt=300))
[<Song: Muse - Madness (279 s; Country)>,
 <Video: Psy - Gangnam Style (253 s at 1080p)>,
 <Song: Gotye feat. Kimbra - Somebody That I Used to Know (244 s; Folk)>,
 <Video: Justin Bieber - Baby (225 s at 720p)>,
 <Song: Florence + The Machine - Spectrum (218 s; Folk)>,
 <Video: Shakira - Waka Waka (211 s at 480p)>]

Etc.

Chaining heterogenic iterables

We can add iterables that aren’t QuerySets to the bunch:

>>> from collections import namedtuple
>>> Book = namedtuple('Book', "author title page_count")
>>> books=(
... Book(author='Charles Dickens', title='A Tale of Two Cities', page_count=869),
... Book(author='Miguel de Cervantes', title='Don Quixote', page_count=1212),
... )
>>> media=chain(Video.objects.all(), books)
>>> media.count()
6
>>> list(media)
[<Video: Psy - Gangnam Style (253 s at 1080p)>,
 <Video: Justin Bieber - Baby (225 s at 720p)>,
 <Video: Lady Gaga - Bad Romance (308 s at 320p)>,
 <Video: Shakira - Waka Waka (211 s at 480p)>,
 Book(author='Charles Dickens', title='A Tale of Two Cities', page_count=869),
 Book(author='Miguel de Cervantes', title='Don Quixote', page_count=1212)]

You can also use cumulative ordering in this case. The only thing you need to keep in mind is that iterables which are not QuerySets should be presorted for the cumulative result to be ordered correctly. An example:

>>> list(media.order_by('title'))
[Book(author='Charles Dickens', title='A Tale of Two Cities', page_count=869),
 <Video: Justin Bieber - Baby (225 s at 720p)>,
 <Video: Lady Gaga - Bad Romance (308 s at 320p)>,
 Book(author='Miguel de Cervantes', title='Don Quixote', page_count=1212),
 <Video: Psy - Gangnam Style (253 s at 1080p)>,
 <Video: Shakira - Waka Waka (211 s at 480p)>]

You can also use the cumulative values and values_list transformations:

>>> media = chain(mt.Video.objects.all(), mt.books)
>>> list(media.values('title'))
[{'title': u'Gangnam Style'}, {'title': u'Baby'}, {'title': u'Bad Romance'},
 {'title': u'Waka Waka'}, {'title': u'A Tale of Two Cities'},
 {'title': u'Don Quixote'}]
>>> list(media.values_list('title', 'author'))
[(u'Gangnam Style', u'Psy'), (u'Baby', u'Justin Bieber'),
 (u'Bad Romance', u'Lady Gaga'), (u'Waka Waka', u'Shakira'),
 (u'A Tale of Two Cities', u'Charles Dickens'),
 (u'Don Quixote', u'Miguel de Cervantes')]
>>> list(media.values_list('author', flat=True))
[u'Psy', u'Justin Bieber', u'Lady Gaga', u'Shakira', u'Charles Dickens',
 u'Miguel de Cervantes']

Custom filtering, sorting and transformations

Chains provide special overridable static methods used while yielding values:

  • xfilter(value) - yield a value only if xfilter(value) returns True. See known issues below.

  • xform(value) - transforms the value JIT before yielding it back. It is only called for values within the specified slice and those which passed xfilter.

  • xkey(value) - returns a value to be used in comparison between elements if sorting should be used. Individual iterables should be presorted for the complete result to be sorted properly. Any cumulative order_by clauses are executed before the xkey method is used.

Methods silently ignored on incompatible iterables

Chains may contain both QuerySet-like objects and other iterables. There are methods which apply only to the former if called collectively on the chain object. These are:

  • defer

  • exclude

  • extra

  • filter

  • only

  • prefetch_related

  • select_for_update

  • select_related

  • using

By default dj.chain considers any iterable a QuerySet-like object as long as it has a method required for the collective call. For example if your custom iterable supports a defer method, it will be used on collective defer calls. If that behaviour is undesirable, you should pass strict=True when constructing a chain:

c = chain(Article.objects.all(), custom_entries, strict=True)

In this case the above methods will only be called on actual QuerySet instances. Note that methods with custom handling of other iterables (like count and order_by) still work.

Unsupported methods

The following methods cannot be supported in a heterogenic context:

  • create

  • get_or_create

  • bulk_create

Methods below are not supported yet but the support is planned in a future release:

  • aggregate

  • annotate

  • dates

  • delete

  • distinct

  • get

  • in_bulk

  • reverse

  • update

Known issues

  1. If slicing or xfilter is used, reported len() is computed by iterating over all iterables so performance is weak. Note that len() is used by list() when you convert your chain to a list or when iterating over the chain in Django templates. If this is not expected, you can convert to a list using a workaround like this:

    list(e for e in some_chain)
  2. Indexing on chains uses iteration underneath so performance is weak. This feature is only available as a last resort. Slicing on the other hand is also lazy.

  3. Collective filter and exclude silently skip filtering on incompatible iterables. Use xfilter(value) as a workaround.

How do I run the tests?

The easiest way would be to run:

$ DJANGO_SETTINGS_MODULE="dj._chaintestproject.settings" django-admin.py test

Change Log

0.9.2

  • Long overdue Python 3 support (considered experimental)

0.9.1

  • support for collective values and values_list transformations

  • support for collective defer, extra, only, prefetch_related, select_for_update, select_related and using methods (silently ignored for incompatible iterables)

  • strict mode (non-QuerySet objects are not tried for compatibility with collective methods)

  • fixed an import error due to incomplete separation from lck.django

0.9.0

  • code separated from lck.django

  • support for collective sort using QuerySet-like order_by on a chain

  • fix for slices with custom steps

  • PEP8-fied all sources

Authors

Glued together by Łukasz Langa.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

dj.chain-0.9.2.tar.gz (18.0 kB view details)

Uploaded Source

File details

Details for the file dj.chain-0.9.2.tar.gz.

File metadata

  • Download URL: dj.chain-0.9.2.tar.gz
  • Upload date:
  • Size: 18.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for dj.chain-0.9.2.tar.gz
Algorithm Hash digest
SHA256 b52b0820b7939fef4e4f3b2132a40b934149d9433badba8a69acc5f7c46ee47b
MD5 539230aa498f8d987cc6112c5684bb26
BLAKE2b-256 52edd534fa81cb6c9d0b24d933f2c062dbf694045f628de30ee689266e95755e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page