Skip to main content

A Django app to plot charts and pivot charts directly from the models. Uses HighCharts and jQuery JavaScript libraries to render the charts on the webpage.

Project description

Documentation Status https://travis-ci.org/grantmcconnaughey/django-chartit2.svg?branch=master https://coveralls.io/repos/grantmcconnaughey/django-chartit2/badge.svg?branch=master&service=github

The fork of Django Charit that adds support for Python 3 and Django 1.8+!

Django Chartit is a Django app that can be used to easily create charts from the data in your database. The charts are rendered using Highcharts and jQuery JavaScript libraries. Data in your database can be plotted as simple line charts, column charts, area charts, scatter plots, and many more chart types. Data can also be plotted as Pivot Charts where the data is grouped and/or pivoted by specific column(s).

Features

  • Plot charts from models.

  • Plot data from multiple models on the same axis on a chart.

  • Plot pivot charts from models. Data can be pivoted by across multiple columns.

  • Legend pivot charts by multiple columns.

  • Combine data from multiple models to plot on same pivot charts.

  • Plot a pareto chart, paretoed by a specific column.

  • Plot only a top few items per category in a pivot chart.

Improvements from the original Django-Chartit

  • Added Python 3 compatibility

  • Added Django 1.8 and 1.9 compatibility

  • Added documentation to ReadTheDocs

  • Added automated testing via Travis CI

  • Added test coverage tracking via Coveralls

Installation

You can install Django-Chartit 2 from PyPI. Just do

$ pip install django_chartit2

You also need supporting JavaScript libraries. See the Required JavaScript Libraries section for more details.

How to Use

Plotting a chart or pivot chart on a webpage involves the following steps.

  1. Create a DataPool or PivotDataPool object that specifies what data you need to retrieve and from where.

  2. Create a Chart or PivotChart object to plot the data in the DataPool or PivotDataPool respectively.

  3. Return the Chart/PivotChart object from a django view function to the django template.

  4. Use the load_charts template tag to load the charts to HTML tags with specific ids.

It is easier to explain the steps above with examples. So read on.

How to Create Charts

Here is a short example of how to create a line chart. Let’s say we have a simple model with 3 fields - one for month and two for temperatures of Boston and Houston.

class MonthlyWeatherByCity(models.Model):
    month = models.IntegerField()
    boston_temp = models.DecimalField(max_digits=5, decimal_places=1)
    houston_temp = models.DecimalField(max_digits=5, decimal_places=1)

And let’s say we want to create a simple line chart of month on the x-axis and the temperatures of the two cities on the y-axis.

from chartit import DataPool, Chart

def weather_chart_view(request):
    #Step 1: Create a DataPool with the data we want to retrieve.
    weatherdata = \
        DataPool(
           series=
            [{'options': {
               'source': MonthlyWeatherByCity.objects.all()},
              'terms': [
                'month',
                'houston_temp',
                'boston_temp']}
             ])

    #Step 2: Create the Chart object
    cht = Chart(
            datasource = weatherdata,
            series_options =
              [{'options':{
                  'type': 'line',
                  'stacking': False},
                'terms':{
                  'month': [
                    'boston_temp',
                    'houston_temp']
                  }}],
            chart_options =
              {'title': {
                   'text': 'Weather Data of Boston and Houston'},
               'xAxis': {
                    'title': {
                       'text': 'Month number'}}})

    #Step 3: Send the chart object to the template.
    return render_to_response({'weatherchart': cht})

And you can use the load_charts filter in the django template to render the chart.

<head>
    <!-- code to include the highcharts and jQuery libraries goes here -->
    <!-- load_charts filter takes a comma-separated list of id's where -->
    <!-- the charts need to be rendered to                             -->
    {% load chartit %}
    {{ weatherchart|load_charts:"container" }}
</head>
<body>
    <div id='container'> Chart will be rendered here </div>
</body>

How to Create Pivot Charts

Here is an example of how to create a pivot chart. Let’s say we have the following model.

class DailyWeather(models.Model):
    month = models.IntegerField()
    day = models.IntegerField()
    temperature = models.DecimalField(max_digits=5, decimal_places=1)
    rainfall = models.DecimalField(max_digits=5, decimal_places=1)
    city = models.CharField(max_length=50)
    state = models.CharField(max_length=2)

We want to plot a pivot chart of month (along the x-axis) versus the average rainfall (along the y-axis) of the top 3 cities with highest average rainfall in each month.

from chartit import PivotDataPool, PivotChart

def rainfall_pivot_chart_view(request):
    #Step 1: Create a PivotDataPool with the data we want to retrieve.
    rainpivotdata = \
        PivotDataPool(
           series =
            [{'options': {
               'source': DailyWeather.objects.all(),
               'categories': ['month']},
              'terms': {
                'avg_rain': Avg('rainfall'),
                'legend_by': ['city'],
                'top_n_per_cat': 3}}
             ])

    #Step 2: Create the PivotChart object
    rainpivcht = \
        PivotChart(
            datasource = rainpivotdata,
            series_options =
              [{'options':{
                  'type': 'column',
                  'stacking': True},
                'terms':[
                  'avg_rain']}],
            chart_options =
              {'title': {
                   'text': 'Rain by Month in top 3 cities'},
               'xAxis': {
                    'title': {
                       'text': 'Month'}}})

    #Step 3: Send the PivotChart object to the template.
    return render_to_response({'rainpivchart': rainpivcht})

And you can use the load_charts filter in the django template to render the chart.

<head>
    <!-- code to include the highcharts and jQuery libraries goes here -->
    <!-- load_charts filter takes a comma-separated list of id's where -->
    <!-- the charts need to be rendered to                             -->
    {% load chartit %}
    {{ rainpivchart|load_charts:"container" }}
</head>
<body>
    <div id='container'> Chart will be rendered here </div>
</body>

Documentation

Full documentation is available here .

Required JavaScript Libraries

The following JavaScript Libraries are required for using Django-Chartit 2.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

django_chartit2-0.2.2.tar.gz (22.0 kB view details)

Uploaded Source

Built Distribution

django_chartit2-0.2.2-py2-none-any.whl (26.5 kB view details)

Uploaded Python 2

File details

Details for the file django_chartit2-0.2.2.tar.gz.

File metadata

File hashes

Hashes for django_chartit2-0.2.2.tar.gz
Algorithm Hash digest
SHA256 8cb46a107b2f0cd2f5072f995c33c5de92e63554ba245eee9cb62d8a834aac23
MD5 31f6ec74b0fab43bd5cf71efb148a9a1
BLAKE2b-256 758533674cea24d15e1c065005cf7bef029a51f0f2bab1a32a4bd21f73cfc367

See more details on using hashes here.

File details

Details for the file django_chartit2-0.2.2-py2-none-any.whl.

File metadata

File hashes

Hashes for django_chartit2-0.2.2-py2-none-any.whl
Algorithm Hash digest
SHA256 ebd1cb51f7d90fb840cc4525f7d245dc9319da7844a7a58191159f8e0ffffe88
MD5 b8151e012232343e60165ebfa606f9fb
BLAKE2b-256 ed30ecac488d1882923382fbf4fc0b4785859ea2d268303ac826049efaaa2cbc

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page