Skip to main content

Django middlewares to monitor your application with Prometheus.io.

Project description

django-prometheus

Export Django monitoring metrics for Prometheus.io

Join the chat at https://gitter.im/django-prometheus/community

PyPI version Build Status Coverage Status PyPi page link -- Python versions Code style: black

Usage

Requirements

  • Django >= 1.11

Installation

Install with:

pip install django-prometheus

Or, if you're using a development version cloned from this repository:

python path-to-where-you-cloned-django-prometheus/setup.py install

This will install prometheus_client as a dependency.

Quickstart

In your settings.py:

INSTALLED_APPS = (
   ...
   'django_prometheus',
   ...
)

MIDDLEWARE_CLASSES = (
    'django_prometheus.middleware.PrometheusBeforeMiddleware',
    # All your other middlewares go here, including the default
    # middlewares like SessionMiddleware, CommonMiddleware,
    # CsrfViewmiddleware, SecurityMiddleware, etc.
    'django_prometheus.middleware.PrometheusAfterMiddleware',
)

In your urls.py:

urlpatterns = [
    ...
    url('', include('django_prometheus.urls')),
]

Configuration

Prometheus uses Histogram based grouping for monitoring latencies. The default buckets are here: https://github.com/prometheus/client_python/blob/master/prometheus_client/core.py

You can define custom buckets for latency, adding more buckets decreases performance but increases accuracy: https://prometheus.io/docs/practices/histograms/

PROMETHEUS_LATENCY_BUCKETS = (.1, .2, .5, .6, .8, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.5, 9.0, 12.0, 15.0, 20.0, 30.0, float("inf"))

Monitoring your databases

SQLite, MySQL, and PostgreSQL databases can be monitored. Just replace the ENGINE property of your database, replacing django.db.backends with django_prometheus.db.backends.

DATABASES = {
    'default': {
        'ENGINE': 'django_prometheus.db.backends.sqlite3',
        'NAME': os.path.join(BASE_DIR, 'db.sqlite3'),
    },
}

Monitoring your caches

Filebased, memcached, redis caches can be monitored. Just replace the cache backend to use the one provided by django_prometheus django.core.cache.backends with django_prometheus.cache.backends.

CACHES = {
    'default': {
        'BACKEND': 'django_prometheus.cache.backends.filebased.FileBasedCache',
        'LOCATION': '/var/tmp/django_cache',
    }
}

Monitoring your models

You may want to monitor the creation/deletion/update rate for your model. This can be done by adding a mixin to them. This is safe to do on existing models (it does not require a migration).

If your model is:

class Dog(models.Model):
    name = models.CharField(max_length=100, unique=True)
    breed = models.CharField(max_length=100, blank=True, null=True)
    age = models.PositiveIntegerField(blank=True, null=True)

Just add the ExportModelOperationsMixin as such:

from django_prometheus.models import ExportModelOperationsMixin

class Dog(ExportModelOperationsMixin('dog'), models.Model):
    name = models.CharField(max_length=100, unique=True)
    breed = models.CharField(max_length=100, blank=True, null=True)
    age = models.PositiveIntegerField(blank=True, null=True)

This will export 3 metrics, django_model_inserts_total{model="dog"}, django_model_updates_total{model="dog"} and django_model_deletes_total{model="dog"}.

Note that the exported metrics are counters of creations, modifications and deletions done in the current process. They are not gauges of the number of objects in the model.

Starting with Django 1.7, migrations are also monitored. Two gauges are exported, django_migrations_applied_by_connection and django_migrations_unapplied_by_connection. You may want to alert if there are unapplied migrations.

If you want to disable the Django migration metrics, set the PROMETHEUS_EXPORT_MIGRATIONS setting to False.

Monitoring and aggregating the metrics

Prometheus is quite easy to set up. An example prometheus.conf to scrape 127.0.0.1:8001 can be found in examples/prometheus.

Here's an example of a PromDash displaying some of the metrics collected by django-prometheus:

Example dashboard

Adding your own metrics

You can add application-level metrics in your code by using prometheus_client directly. The exporter is global and will pick up your metrics.

To add metrics to the Django internals, the easiest way is to extend django-prometheus' classes. Please consider contributing your metrics, pull requests are welcome. Make sure to read the Prometheus best practices on instrumentation and naming.

Importing Django Prometheus using only local settings

If you wish to use Django Prometheus but are not able to change the code base, it's possible to have all the default metrics by modifying only the settings.

First step is to inject prometheus' middlewares and to add django_prometheus in INSTALLED_APPS

MIDDLEWARE = (
        ('django_prometheus.middleware.PrometheusBeforeMiddleware',) +
       MIDDLEWARE +
        ('django_prometheus.middleware.PrometheusAfterMiddleware',)
    )

INSTALLED_APPS = INSTALLED_APPS + ('django_prometheus',)

Second step is to create the /metrics end point, for that we need another file (called urls_prometheus_wrapper.py in this example) that will wraps the apps URLs and add one on top:

from django.conf.urls import include, url


urlpatterns = []

urlpatterns.append(url('^prometheus/', include('django_prometheus.urls')))
urlpatterns.append(url('', include('myapp.urls')))

This file will add a "/prometheus/metrics" end point to the URLs of django that will export the metrics (replace myapp by your project name).

Then we inject the wrapper in settings:

ROOT_URLCONF = "graphite.urls_prometheus_wrapper"

Adding custom labels to middleware (request/response) metrics

You can add application specific labels to metrics reported by the django-prometheus middleware. This involves extending the classes defined in middleware.py.

  • Extend the Metrics class and override the register_metric method to add the application specific labels.
  • Extend middleware classes, set the metrics_cls class attribute to the the extended metric class and override the label_metric method to attach custom metrics.

See implementation example in the test app

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

django-prometheus-2.1.0.dev0.tar.gz (20.0 kB view details)

Uploaded Source

Built Distribution

django_prometheus-2.1.0.dev0-py2.py3-none-any.whl (27.6 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file django-prometheus-2.1.0.dev0.tar.gz.

File metadata

  • Download URL: django-prometheus-2.1.0.dev0.tar.gz
  • Upload date:
  • Size: 20.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/44.0.0 requests-toolbelt/0.9.1 tqdm/4.41.1 CPython/2.7.15

File hashes

Hashes for django-prometheus-2.1.0.dev0.tar.gz
Algorithm Hash digest
SHA256 668b5d6c93982817e33723c40b3ff7f5b53dd34a8915e1f9eb4b017b5b8023c4
MD5 ef0335b1b0f08e3cabdd8a8b419173c8
BLAKE2b-256 b671286e151cb915c8874883b82326fd801bf1c3588310649bd2e5ca038f884f

See more details on using hashes here.

File details

Details for the file django_prometheus-2.1.0.dev0-py2.py3-none-any.whl.

File metadata

  • Download URL: django_prometheus-2.1.0.dev0-py2.py3-none-any.whl
  • Upload date:
  • Size: 27.6 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/44.0.0 requests-toolbelt/0.9.1 tqdm/4.41.1 CPython/2.7.15

File hashes

Hashes for django_prometheus-2.1.0.dev0-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 b20eeb6d353487674a616a917922f6adbef033596cddbee91adc7b2dbac2ba46
MD5 1923e9b2bcf8de215c666abb6bc6a119
BLAKE2b-256 a195ba8ef0bb0487742c5a05ac93038d252932372aa1409412b02a81c7a132ec

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page