UNKNOWN
Project description
Django-Chartit can be used to plot the data from various models in your Django project directly onto the web pages. The charts are rendered using the Highcharts and jQuery JavaScript libraries. Data in your database can be plotted as simple line charts, column charts, area charts, scatter plots, and many more chart types. Data can also be plotted as Pivot Charts where the data is grouped and/or pivoted by specific column(s).
Features
Plot charts from models.
Plot data from multiple models on the same axis on a chart.
Plot pivot charts from models. Data can be pivoted by multiple columns.
Legend pivot charts by multiple columns.
Combine data from multiple models to plot on same pivot charts.
Plot a pareto chart, paretoed by a specific column.
Plot only a top few items per category in a pivot chart.
Installation
You can install Django-Chartit from PyPI. Just do
$ pip install django_chartit
You also need supporting JavaScript libraries. See the Required JavaScript Libraries section for more details.
How to Use
Plotting a chart or pivot chart on a webpage involves the following steps.
Create a DataPool or PivotDataPool object that specifies what data you need to retrieve and from where.
Create a Chart or PivotChart object to plot the data in the DataPool or PivotDataPool respectively.
Return the Chart/PivotChart object from a django view function to the django template.
Use the load_charts template tag to load the charts to HTML tags with specific ids.
It is easier to explain the steps above with examples. So read on.
How to Create Charts
Here is a short example of how to create a line chart. Let’s say we have a simple model with 3 fields - one for month and two for temperatures of Boston and Houston.
class MonthlyWeatherByCity(models.Model): month = models.IntegerField() boston_temp = models.DecimalField(max_digits=5, decimal_places=1) houston_temp = models.DecimalField(max_digits=5, decimal_places=1)
And let’s say we want to create a simple line chart of month on the x-axis and the temperatures of the two cities on the y-axis.
from chartit import DataPool, Chart def weather_chart_view(request): #Step 1: Create a DataPool with the data we want to retrieve. weatherdata = \ DataPool( series= [{'options': { 'source': MonthlyWeatherByCity.objects.all()}, 'terms': [ 'month', 'houston_temp', 'boston_temp']} ]) #Step 2: Create the Chart object cht = Chart( datasource = weatherdata, series_options = [{'options':{ 'type': 'line', 'stacking': False}, 'terms':{ 'month': [ 'boston_temp', 'houston_temp'] }}], chart_options = {'title': { 'text': 'Weather Data of Boston and Houston'}, 'xAxis': { 'title': { 'text': 'Month number'}}}) #Step 3: Send the chart object to the template. return render_to_response({'weatherchart': cht})
And you can use the load_charts filter in the django template to render the chart.
<head> <!-- code to include the highcharts and jQuery libraries goes here --> <!-- load_charts filter takes a comma-separated list of id's where --> <!-- the charts need to be rendered to --> {% load chartit %} {{ weatherchart|load_charts:"container" }} </head> <body> <div id='container'> Chart will be rendered here </div> </body>
How to Create Pivot Charts
Here is an example of how to create a pivot chart. Let’s say we have the following model.
class DailyWeather(models.Model): month = models.IntegerField() day = models.IntegerField() temperature = models.DecimalField(max_digits=5, decimal_places=1) rainfall = models.DecimalField(max_digits=5, decimal_places=1) city = models.CharField(max_length=50) state = models.CharField(max_length=2)
We want to plot a pivot chart of month (along the x-axis) versus the average rainfall (along the y-axis) of the top 3 cities with highest average rainfall in each month.
from chartit import PivotDataPool, PivotChart def rainfall_pivot_chart_view(request): #Step 1: Create a PivotDataPool with the data we want to retrieve. rainpivotdata = \ PivotDataPool( series = [{'options': { 'source': DailyWeather.objects.all(), 'categories': ['month']}, 'terms': { 'avg_rain': Avg('rainfall'), 'legend_by': ['city'], 'top_n_per_cat': 3}} ]) #Step 2: Create the PivotChart object rainpivcht = \ PivotChart( datasource = rainpivotdata, series_options = [{'options':{ 'type': 'column', 'stacking': True}, 'terms':[ 'avg_rain']}], chart_options = {'title': { 'text': 'Rain by Month in top 3 cities'}, 'xAxis': { 'title': { 'text': 'Month'}}}) #Step 3: Send the PivotChart object to the template. return render_to_response({'rainpivchart': rainpivcht})
And you can use the load_charts filter in the django template to render the chart.
<head> <!-- code to include the highcharts and jQuery libraries goes here --> <!-- load_charts filter takes a comma-separated list of id's where --> <!-- the charts need to be rendered to --> {% load chartit %} {{ rainpivchart|load_charts:"container" }} </head> <body> <div id='container'> Chart will be rendered here </div> </body>
Demo
The above examples are just a brief taste of what you can do with Django-Chartit. For more examples and to look at the charts in actions, see the demo website.
Documentation
Full documentation is available here.
Feedback
I would love to hear any feedback.
Source Code
Source code is available on GitHub.
Bugs
If there are any bugs, please submit a pull request or submit an issue.
Required JavaScript Libraries
The following JavaScript Libraries are required for using Django-Chartit.
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
File details
Details for the file django_chartit-0.1.tar.gz
.
File metadata
- Download URL: django_chartit-0.1.tar.gz
- Upload date:
- Size: 20.0 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 2a8f6170519a80bc6ff7a9a3cb025fb0d88a0993ddcdf1718bab001004de1059 |
|
MD5 | bd9123eb77b3f43f61142a6bf6bde534 |
|
BLAKE2b-256 | e41ae15c967e364eba60ffedf4ce56a716bb4fe8651d1c294214e5b889a060a1 |