Skip to main content

Launchpad is a library that simplifies writing distributed programs and seamlessly launching them on a range of supported platforms.

Project description

Launchpad

PyPI - Python Version PyPI version

Launchpad is a library that simplifies writing distributed programs by seamlessly launching them on a variety of different platforms. Switching between local and distributed execution requires only a flag change.

Launchpad introduces a programming model that represents a distributed system as a graph data structure (a Program) describing the system’s topology. Each node in the program graph represents a service in the distributed system, i.e. the fundamental unit of computation that we are interested in running. As nodes are added to this graph, Launchpad constructs a handle for each of them. A handle ultimately represents a client to the yet-to-be-constructed service. A directed edge in the program graph, representing communication between two services, is created when the handle associated with one node is given to another at construction time. This edge originates from the receiving node, indicating that the receiving node will be the one initiating communication. This process allows Launchpad to define cross-service communication simply by passing handles to nodes. Launchpad provides a number of node types, including:

  • PyNode - a simple node executing provided Python code upon entry. It is similar to a main function, but with the distinction that each node may be running in separate processes and on different machines.
  • CourierNode - it enables cross-node communication. CourierNodes can communicate by calling public methods on each other either synchronously or asynchronously via futures. The underlying remote procedure calls are handled transparently by Launchpad.
  • ReverbNode - it exposes functionality of Reverb, an easy-to-use data storage and transport system primarily used by RL algorithms as an experience replay. You can read more about Reverb here.
  • MultiThreadingColocation - allows to colocate multiple other nodes in a single process.
  • MultiProcessingColocation - allows to colocate multiple other nodes as sub processes.

Using Launchpad involves writing nodes and defining the topology of your distributed program by passing to each node references of the other nodes that it can communicate with. The core data structure dealing with this is called a Launchpad program, which can then be executed seamlessly with a number of supported runtimes.

Supported launch types

Launchpad supports a number of launch types, both for running programs on a single machine, in a distributed manner, or in a form of a test. Launch type can be controlled by the launch_type argument passed to lp.launch method, or specified through the --lp_launch_type command line flag. Please refer to the documentation of the [LaunchType](https://github.com/deepmind/launchpad/search?q=%22class LaunchType%22) for details.

Table of Contents

Installation

Please keep in mind that Launchpad is not hardened for production use, and while we do our best to keep things in working order, things may break or segfault.

:warning: Launchpad currently only supports Linux based OSes.

The recommended way to install Launchpad is with pip. We also provide instructions to build from source using the same docker images we use for releases.

TensorFlow can be installed separately or as part of the pip install. Installing TensorFlow as part of the install ensures compatibility.

$ pip install dm-launchpad[tensorflow]

# Without Tensorflow install and version dependency check.
$ pip install dm-launchpad

Nightly builds

PyPI version

$ pip install dm-launchpad-nightly[tensorflow]

# Without Tensorflow install and version dependency check.
$ pip install dm-launchpad-nightly

Similarily, Reverb can be installed ensuring compatibility:

$ pip install dm-launchpad[reverb]

Develop Launchpad inside a docker container

The most convenient way to develop Launchpad is with Docker. This way you can compile and test Launchpad inside a container without having to install anything on your host machine, while you can still use your editor of choice for making code changes. The steps are as follows.

Checkout Launchpad's source code from GitHub.

$ git checkout https://github.com/deepmind/launchpad.git
$ cd launchpad

Build the Docker container to be used for compiling and testing Launchpad. You can specify tensorflow_pip parameter to set the version of Tensorflow to build against. You can also specify which version(s) of Python container should support. The command below enables support for Python 3.7, 3.8 and 3.9.

$ docker build --tag launchpad:devel \
  --build-arg tensorflow_pip=tensorflow==2.3.0 \
  --build-arg python_version="3.7 3.8 3.9" - < docker/build.dockerfile

The next step is to enter the built Docker image, binding checked out Launchpad's sources to /tmp/launchpad within the container.

$ docker run --rm --mount "type=bind,src=$PWD,dst=/tmp/launchpad" \
  -it launchpad:devel bash

At this point you can build and install Launchpad within the container by executing:

$ /tmp/launchpad/oss_build.sh

By default it builds Python 3.8 version, you can change that with --python flag.

$ /tmp/launchpad/oss_build.sh --python 3.8

To make sure installation was successful and Launchpad works as expected, you can run some examples provided:

$ python3.8 -m launchpad.examples.hello_world.launch
$ python3.8 -m launchpad.examples.consumer_producers.launch --lp_launch_type=local_mp

To make changes to Launchpad codebase, edit sources checked out from GitHub directly on your host machine (outside of the Docker container). All changes are visible inside the Docker container. To recompile just run the oss_build.sh script again from the Docker container. In order to reduce compilation time of the consecutive runs, make sure to not exit the Docker container.

Citing Launchpad

If you use Launchpad in your work, please cite the accompanying technical report:

@article{yang2021launchpad,
    title={Launchpad: A Programming Model for Distributed Machine Learning
           Research},
    author={Fan Yang and Gabriel Barth-Maron and Piotr Stańczyk and Matthew
            Hoffman and Siqi Liu and Manuel Kroiss and Aedan Pope and Alban
            Rrustemi},
    year={2021},
    journal={arXiv preprint arXiv:2106.04516},
    url={https://arxiv.org/abs/2106.04516},
}

Acknowledgements

We greatly appreciate all the help from Reverb and TF-Agents teams in setting up building and testing setup for Launchpad.

Other resources

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

dm_launchpad_nightly-0.3.0.dev20211112-cp39-cp39-manylinux2010_x86_64.whl (3.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

dm_launchpad_nightly-0.3.0.dev20211112-cp38-cp38-manylinux2010_x86_64.whl (3.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

dm_launchpad_nightly-0.3.0.dev20211112-cp37-cp37m-manylinux2010_x86_64.whl (3.8 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

File details

Details for the file dm_launchpad_nightly-0.3.0.dev20211112-cp39-cp39-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for dm_launchpad_nightly-0.3.0.dev20211112-cp39-cp39-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 8711b913b4313026aec325edbb846c352049f86b664df647acac8339d8b820b1
MD5 acb6652eae605b67c55a04a1501f6fb5
BLAKE2b-256 ffe19ffa170f41d3221a6f50cd6efbbb5d13b52da0fafb97798fd8c355cbbbf9

See more details on using hashes here.

File details

Details for the file dm_launchpad_nightly-0.3.0.dev20211112-cp38-cp38-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for dm_launchpad_nightly-0.3.0.dev20211112-cp38-cp38-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 fd1186f9f7275f04739b8cb081ced34f6e7dc1202f1e537845d1fd285833a8ce
MD5 707e56f5d1a673897a1ac6c5f78bf79c
BLAKE2b-256 8c9516a3c200445fe918c6c2a13a1eba2eb6eabe515589e494678e456768a798

See more details on using hashes here.

File details

Details for the file dm_launchpad_nightly-0.3.0.dev20211112-cp37-cp37m-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for dm_launchpad_nightly-0.3.0.dev20211112-cp37-cp37m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 ed7ab22d24e268c203f85e5c514e022c86a4db2e92968e05d6e186bb04038a91
MD5 bc0ae70f9f1b0e57813acbeab0cf1165
BLAKE2b-256 e623c926d778a798c7908d05c87c2a073fcae49463afbeb5fab43fd2b0d6a65d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page