Skip to main content

Launchpad is a library that simplifies writing distributed programs and seamlessly launching them on a range of supported platforms.

Project description

Launchpad

PyPI - Python Version PyPI version

Launchpad is a library that simplifies writing distributed programs by seamlessly launching them on a variety of different platforms. Switching between local and distributed execution requires only a flag change.

Launchpad introduces a programming model that represents a distributed system as a graph data structure (a Program) describing the system’s topology. Each node in the program graph represents a service in the distributed system, i.e. the fundamental unit of computation that we are interested in running. As nodes are added to this graph, Launchpad constructs a handle for each of them. A handle ultimately represents a client to the yet-to-be-constructed service. A directed edge in the program graph, representing communication between two services, is created when the handle associated with one node is given to another at construction time. This edge originates from the receiving node, indicating that the receiving node will be the one initiating communication. This process allows Launchpad to define cross-service communication simply by passing handles to nodes. Launchpad provides a number of node types, including:

  • PyNode - a simple node executing provided Python code upon entry. It is similar to a main function, but with the distinction that each node may be running in separate processes and on different machines.
  • CourierNode - it enables cross-node communication. CourierNodes can communicate by calling public methods on each other either synchronously or asynchronously via futures. The underlying remote procedure calls are handled transparently by Launchpad.
  • ReverbNode - it exposes functionality of Reverb, an easy-to-use data storage and transport system primarily used by RL algorithms as an experience replay. You can read more about Reverb here.
  • MultiThreadingColocation - allows to colocate multiple other nodes in a single process.
  • MultiProcessingColocation - allows to colocate multiple other nodes as sub processes.

Using Launchpad involves writing nodes and defining the topology of your distributed program by passing to each node references of the other nodes that it can communicate with. The core data structure dealing with this is called a Launchpad program, which can then be executed seamlessly with a number of supported runtimes.

Supported launch types

Launchpad supports a number of launch types, both for running programs on a single machine, in a distributed manner, or in a form of a test. Launch type can be controlled by the launch_type argument passed to lp.launch method, or specified through the --lp_launch_type command line flag. Please refer to the documentation of the [LaunchType](https://github.com/deepmind/launchpad/search?q=%22class LaunchType%22) for details.

Table of Contents

Installation

Please keep in mind that Launchpad is not hardened for production use, and while we do our best to keep things in working order, things may break or segfault.

:warning: Launchpad currently only supports Linux based OSes.

The recommended way to install Launchpad is with pip. We also provide instructions to build from source using the same docker images we use for releases.

TensorFlow can be installed separately or as part of the pip install. Installing TensorFlow as part of the install ensures compatibility.

$ pip install dm-launchpad[tensorflow]

# Without Tensorflow install and version dependency check.
$ pip install dm-launchpad

Nightly builds

PyPI version

$ pip install dm-launchpad-nightly[tensorflow]

# Without Tensorflow install and version dependency check.
$ pip install dm-launchpad-nightly

Similarily, Reverb can be installed ensuring compatibility:

$ pip install dm-launchpad[reverb]

Develop Launchpad inside a docker container

The most convenient way to develop Launchpad is with Docker. This way you can compile and test Launchpad inside a container without having to install anything on your host machine, while you can still use your editor of choice for making code changes. The steps are as follows.

Checkout Launchpad's source code from GitHub.

$ git checkout https://github.com/deepmind/launchpad.git
$ cd launchpad

Build the Docker container to be used for compiling and testing Launchpad. You can specify tensorflow_pip parameter to set the version of Tensorflow to build against. You can also specify which version(s) of Python container should support. The command below enables support for Python 3.7, 3.8 and 3.9.

$ docker build --tag launchpad:devel \
  --build-arg tensorflow_pip=tensorflow==2.3.0 \
  --build-arg python_version="3.7 3.8 3.9" - < docker/build.dockerfile

The next step is to enter the built Docker image, binding checked out Launchpad's sources to /tmp/launchpad within the container.

$ docker run --rm --mount "type=bind,src=$PWD,dst=/tmp/launchpad" \
  -it launchpad:devel bash

At this point you can build and install Launchpad within the container by executing:

$ /tmp/launchpad/oss_build.sh

By default it builds Python 3.8 version, you can change that with --python flag.

$ /tmp/launchpad/oss_build.sh --python 3.8

To make sure installation was successful and Launchpad works as expected, you can run some examples provided:

$ python3.8 -m launchpad.examples.hello_world.launch
$ python3.8 -m launchpad.examples.consumer_producers.launch --lp_launch_type=local_mp

To make changes to Launchpad codebase, edit sources checked out from GitHub directly on your host machine (outside of the Docker container). All changes are visible inside the Docker container. To recompile just run the oss_build.sh script again from the Docker container. In order to reduce compilation time of the consecutive runs, make sure to not exit the Docker container.

Citing Launchpad

If you use Launchpad in your work, please cite the accompanying technical report:

@article{yang2021launchpad,
    title={Launchpad: A Programming Model for Distributed Machine Learning
           Research},
    author={Fan Yang and Gabriel Barth-Maron and Piotr Stańczyk and Matthew
            Hoffman and Siqi Liu and Manuel Kroiss and Aedan Pope and Alban
            Rrustemi},
    year={2021},
    journal={arXiv preprint arXiv:2106.04516},
    url={https://arxiv.org/abs/2106.04516},
}

Acknowledgements

We greatly appreciate all the help from Reverb and TF-Agents teams in setting up building and testing setup for Launchpad.

Other resources

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

dm_launchpad_nightly-0.3.0.dev20211114-cp39-cp39-manylinux2010_x86_64.whl (3.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

dm_launchpad_nightly-0.3.0.dev20211114-cp38-cp38-manylinux2010_x86_64.whl (3.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

dm_launchpad_nightly-0.3.0.dev20211114-cp37-cp37m-manylinux2010_x86_64.whl (3.8 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

File details

Details for the file dm_launchpad_nightly-0.3.0.dev20211114-cp39-cp39-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for dm_launchpad_nightly-0.3.0.dev20211114-cp39-cp39-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 debd0ebb597a77f3cfbbb1c98be4cc745bd69b8fb8e8cb90572e0a979bb5e59c
MD5 b74c46c8a2bcc9046fb56d78b88c1721
BLAKE2b-256 e1beba7f04f3551dedee50defd754db79d9ab07512414ce623c4065233e2e6f9

See more details on using hashes here.

Provenance

File details

Details for the file dm_launchpad_nightly-0.3.0.dev20211114-cp38-cp38-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for dm_launchpad_nightly-0.3.0.dev20211114-cp38-cp38-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 1a0cba2419b983bd2dfa947a561ba09359b40ab60816b7eb47ce23512800d93f
MD5 b671b42ed6ccc10d2fd82b01b3d45600
BLAKE2b-256 f41f4ab0a40873c3f670af3e93668f44cf7a24e974ca93fe0054fd0690ee669a

See more details on using hashes here.

Provenance

File details

Details for the file dm_launchpad_nightly-0.3.0.dev20211114-cp37-cp37m-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for dm_launchpad_nightly-0.3.0.dev20211114-cp37-cp37m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 3f975f2db8b9bd4c95855a90633f233cbc3f0d15774f4e871d8c0b352227dea8
MD5 44c74dfe62e79ba7abdc1e758983a14f
BLAKE2b-256 ed3da180722d15052d1b85d4cc65a4ace2da20cfcf279cab876ef770e1e3523a

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page