Skip to main content

No project description provided

Project description

DeepMind Lab2D

A learning environment written in C++ and Lua for the creation of grid worlds.

DeepMind Lab2D screenshot

About

DeepMind Lab2D is a system for the creation of 2D environments for machine learning. The main goals of the system are ease of use and performance: The environments are "grid worlds", which are defined with a combination of simple text-based maps for the layout of the world, and Lua code for its behaviour. Machine learning agents interact with these environments through one of two APIs, the Python dm_env API or a custom C API (which is also used by DeepMind Lab). Multiple agents are supported.

If you use DeepMind Lab2D in your research and would like to cite it, we suggest you cite the accompanying whitepaper.

Getting started

We provide an example "random" agent in python/random_agent, which performs random actions. This can be used as a base for creating your own agents, and as a simple tool to preview an environment.

bazel run -c opt dmlab2d/random_agent -- --level_name=clean_up

External dependencies, prerequisites and porting notes

DeepMind Lab2D currently ships as source code only. It depends on a few external software libraries, which we ship in several different ways:

  • The dm_env, eigen, luajit, lua5.1, lua5.2, luajit, png and zlib libraries are referenced as external Bazel sources, and Bazel BUILD files are provided. The dependent code itself should be fairly portable, but the BUILD rules we ship are specific to Linux on x86. To build on a different platform you will most likely have to edit those BUILD files.

  • A "generic reinforcement learning API" is included in //third_party/rl_api.

  • Several additional libraries are required but are not shipped in any form; they must be present on your system:

    • Python 3.6 or above with NumPy, PyGame, and packaging.

The build rules are using a few compiler settings that are specific to GCC/Clang. If some flags are not recognized by your compiler (typically those would be specific warning suppressions), you may have to edit those flags.

Disclaimer

This is not an official Google product.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

dmlab2d-1.0.0_dev.9-cp311-cp311-manylinux_2_35_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.35+ x86-64

dmlab2d-1.0.0_dev.9-cp311-cp311-macosx_13_0_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.11 macOS 13.0+ x86-64

dmlab2d-1.0.0_dev.9-cp311-cp311-macosx_13_0_arm64.whl (1.2 MB view details)

Uploaded CPython 3.11 macOS 13.0+ ARM64

dmlab2d-1.0.0_dev.9-cp311-cp311-macosx_12_0_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.11 macOS 12.0+ x86-64

dmlab2d-1.0.0_dev.9-cp311-cp311-macosx_12_0_arm64.whl (1.2 MB view details)

Uploaded CPython 3.11 macOS 12.0+ ARM64

dmlab2d-1.0.0_dev.9-cp311-cp311-macosx_11_0_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.11 macOS 11.0+ x86-64

dmlab2d-1.0.0_dev.9-cp310-cp310-manylinux_2_35_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.35+ x86-64

dmlab2d-1.0.0_dev.9-cp310-cp310-macosx_13_0_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.10 macOS 13.0+ x86-64

dmlab2d-1.0.0_dev.9-cp310-cp310-macosx_13_0_arm64.whl (1.2 MB view details)

Uploaded CPython 3.10 macOS 13.0+ ARM64

dmlab2d-1.0.0_dev.9-cp310-cp310-macosx_12_0_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.10 macOS 12.0+ x86-64

dmlab2d-1.0.0_dev.9-cp310-cp310-macosx_12_0_arm64.whl (1.2 MB view details)

Uploaded CPython 3.10 macOS 12.0+ ARM64

dmlab2d-1.0.0_dev.9-cp310-cp310-macosx_11_0_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.10 macOS 11.0+ x86-64

dmlab2d-1.0.0_dev.9-cp39-cp39-manylinux_2_35_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.35+ x86-64

dmlab2d-1.0.0_dev.9-cp39-cp39-macosx_13_0_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.9 macOS 13.0+ x86-64

dmlab2d-1.0.0_dev.9-cp39-cp39-macosx_13_0_arm64.whl (1.2 MB view details)

Uploaded CPython 3.9 macOS 13.0+ ARM64

dmlab2d-1.0.0_dev.9-cp39-cp39-macosx_12_0_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.9 macOS 12.0+ x86-64

dmlab2d-1.0.0_dev.9-cp39-cp39-macosx_12_0_arm64.whl (1.2 MB view details)

Uploaded CPython 3.9 macOS 12.0+ ARM64

dmlab2d-1.0.0_dev.9-cp39-cp39-macosx_11_0_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.9 macOS 11.0+ x86-64

dmlab2d-1.0.0_dev.9-cp38-cp38-manylinux_2_35_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.35+ x86-64

dmlab2d-1.0.0_dev.9-cp38-cp38-macosx_13_0_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.8 macOS 13.0+ x86-64

dmlab2d-1.0.0_dev.9-cp38-cp38-macosx_13_0_arm64.whl (1.2 MB view details)

Uploaded CPython 3.8 macOS 13.0+ ARM64

dmlab2d-1.0.0_dev.9-cp38-cp38-macosx_12_0_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.8 macOS 12.0+ x86-64

dmlab2d-1.0.0_dev.9-cp38-cp38-macosx_12_0_arm64.whl (1.2 MB view details)

Uploaded CPython 3.8 macOS 12.0+ ARM64

dmlab2d-1.0.0_dev.9-cp38-cp38-macosx_11_0_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.8 macOS 11.0+ x86-64

File details

Details for the file dmlab2d-1.0.0_dev.9-cp311-cp311-manylinux_2_35_x86_64.whl.

File metadata

File hashes

Hashes for dmlab2d-1.0.0_dev.9-cp311-cp311-manylinux_2_35_x86_64.whl
Algorithm Hash digest
SHA256 15d33b557d0b65ca4d6df8c9f72ceb013d74dfb4d31f8a028d6ab68b84835d50
MD5 a19d0f68b795ce1f83ac194f68bb8150
BLAKE2b-256 e31f23737541f6101a800e9d5391e657c25796e3739542bc439cd5e92f00774f

See more details on using hashes here.

File details

Details for the file dmlab2d-1.0.0_dev.9-cp311-cp311-macosx_13_0_x86_64.whl.

File metadata

File hashes

Hashes for dmlab2d-1.0.0_dev.9-cp311-cp311-macosx_13_0_x86_64.whl
Algorithm Hash digest
SHA256 22a34a1aa87ffe8836ed2a2a82db3abd00a9ee101e65ab6150b9f489249fac4c
MD5 250edc390164a02d21b96440a79c6250
BLAKE2b-256 2e513ef141ff2a12c0950fee22203d22cf32c1494e1a02b9f5fa62076fab615c

See more details on using hashes here.

File details

Details for the file dmlab2d-1.0.0_dev.9-cp311-cp311-macosx_13_0_arm64.whl.

File metadata

File hashes

Hashes for dmlab2d-1.0.0_dev.9-cp311-cp311-macosx_13_0_arm64.whl
Algorithm Hash digest
SHA256 77e30bd25ca1f126692ed16a69f1d0e899e9da96df71c3f8f2311876f35b3ad2
MD5 1304cf3844b8c1035e7786659918b7fb
BLAKE2b-256 392b39cd84d61f25d55a32b8ad96d50d26e1f7632bd31d1b6b1638a11eee4542

See more details on using hashes here.

File details

Details for the file dmlab2d-1.0.0_dev.9-cp311-cp311-macosx_12_0_x86_64.whl.

File metadata

File hashes

Hashes for dmlab2d-1.0.0_dev.9-cp311-cp311-macosx_12_0_x86_64.whl
Algorithm Hash digest
SHA256 0671da888307de3c791b8303ac86b28ad17b1b3503c87121f8cd4b064824786e
MD5 fbf600c2df8c1e5e3d3611d5c05d5890
BLAKE2b-256 85f7749d667c7b5fa308b0a57c9cc336cf0d8406d7c4ba5f5f281e41d7ec9a2a

See more details on using hashes here.

File details

Details for the file dmlab2d-1.0.0_dev.9-cp311-cp311-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for dmlab2d-1.0.0_dev.9-cp311-cp311-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 0f6b8a45a4a0063bed140041b2eee47546c2fd26cb721de13c87a8893d1c6fbf
MD5 449f1e66a605355e9025ea31e80bf30c
BLAKE2b-256 0d4f05ed446aaabaa8ffbf4199742728f0d1274f22977b9f209d7a857f8616db

See more details on using hashes here.

File details

Details for the file dmlab2d-1.0.0_dev.9-cp311-cp311-macosx_11_0_x86_64.whl.

File metadata

File hashes

Hashes for dmlab2d-1.0.0_dev.9-cp311-cp311-macosx_11_0_x86_64.whl
Algorithm Hash digest
SHA256 d785f9af273e4b843c14f0c22a232132740cc43d93f4d7f3bfbf0b0dcacad97d
MD5 c7e88e8e90f4312d0972bd5b78dd3e65
BLAKE2b-256 9752cf94241b3b2621b5ac934ff84ec827b5923760973bdb7e457de089f4a2f1

See more details on using hashes here.

File details

Details for the file dmlab2d-1.0.0_dev.9-cp310-cp310-manylinux_2_35_x86_64.whl.

File metadata

File hashes

Hashes for dmlab2d-1.0.0_dev.9-cp310-cp310-manylinux_2_35_x86_64.whl
Algorithm Hash digest
SHA256 2ebcf3239fc6b25e8279483e87285e6c01bb0bf3d3e458cde4159856fa7570b1
MD5 ca894d2f6bf45fc6cda355f0f19f9754
BLAKE2b-256 83388c12acd45d1017a9412a716127225387fb811150109ff76e11b345725fee

See more details on using hashes here.

File details

Details for the file dmlab2d-1.0.0_dev.9-cp310-cp310-macosx_13_0_x86_64.whl.

File metadata

File hashes

Hashes for dmlab2d-1.0.0_dev.9-cp310-cp310-macosx_13_0_x86_64.whl
Algorithm Hash digest
SHA256 0ccea4429d55ad8a79561084aec6f43fa4ece3ac574fa53414ceec7f6cecf3c7
MD5 dc49fbf3936d09c0dcf30630629a207b
BLAKE2b-256 b76349800f9bde9e8ffb0830a1037cd5a4915a4f86d3b7459a2ea7f7c07ae09e

See more details on using hashes here.

File details

Details for the file dmlab2d-1.0.0_dev.9-cp310-cp310-macosx_13_0_arm64.whl.

File metadata

File hashes

Hashes for dmlab2d-1.0.0_dev.9-cp310-cp310-macosx_13_0_arm64.whl
Algorithm Hash digest
SHA256 27ab7255a50237a4a78595f0b5cb84bd3968ba033b12c7c5bf35b6fb99db8e08
MD5 e85ce7945c4dc3497f4dac9e0820612a
BLAKE2b-256 e440e48232a6f4615254c931a01690b7b4a5cb595e70c95c00b6cb6753fc134d

See more details on using hashes here.

File details

Details for the file dmlab2d-1.0.0_dev.9-cp310-cp310-macosx_12_0_x86_64.whl.

File metadata

File hashes

Hashes for dmlab2d-1.0.0_dev.9-cp310-cp310-macosx_12_0_x86_64.whl
Algorithm Hash digest
SHA256 73d7a9ca986b8e993316e58656cf682b93b4b0b25218a9c4dc56c2c2c3b599bf
MD5 f1f2e94349ed8dfd9c288ebcf1fe17f6
BLAKE2b-256 ba0158f7e911830334a6d9ab1c72aee3d6b93cea2a04c8e698366e631471fe4e

See more details on using hashes here.

File details

Details for the file dmlab2d-1.0.0_dev.9-cp310-cp310-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for dmlab2d-1.0.0_dev.9-cp310-cp310-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 3d5fa1b17706e08cc9a02ae94616af1a9d05a5cf1fa1addbf174ae24e3bb7eaa
MD5 85372436602e68c4bb04a29309836421
BLAKE2b-256 7d72e26606b8b802074b74e27ed95e23b85d560a4e838dae014c676fc03d5dee

See more details on using hashes here.

File details

Details for the file dmlab2d-1.0.0_dev.9-cp310-cp310-macosx_11_0_x86_64.whl.

File metadata

File hashes

Hashes for dmlab2d-1.0.0_dev.9-cp310-cp310-macosx_11_0_x86_64.whl
Algorithm Hash digest
SHA256 00b41d110cf312c4d8c1f113dcfef4c28696d30b8b6782636d16aaf2baa73244
MD5 857ebc3a5c8c52b023acd6a8512b617d
BLAKE2b-256 66209149becb776d79c8685b1a9322ec54b5e2a31b3107b4b9553dce6e2ff6ad

See more details on using hashes here.

File details

Details for the file dmlab2d-1.0.0_dev.9-cp39-cp39-manylinux_2_35_x86_64.whl.

File metadata

File hashes

Hashes for dmlab2d-1.0.0_dev.9-cp39-cp39-manylinux_2_35_x86_64.whl
Algorithm Hash digest
SHA256 48f35823f09e2a194c6824281e2aba20a4606f29c2ba29cf6e3395c1bbc10858
MD5 908c821509f5fddf423658529c3393a2
BLAKE2b-256 6388f8c09e2c2e301bb98b98ebdb1d3a91318cc668b892ed9b2389d65a678aaf

See more details on using hashes here.

File details

Details for the file dmlab2d-1.0.0_dev.9-cp39-cp39-macosx_13_0_x86_64.whl.

File metadata

File hashes

Hashes for dmlab2d-1.0.0_dev.9-cp39-cp39-macosx_13_0_x86_64.whl
Algorithm Hash digest
SHA256 ca60d64d8eff466b54b0ef4d7a602b186c3f276694e9dc87152babc94c99da08
MD5 d875d51681b89b2b7a7cdb53088a6379
BLAKE2b-256 4466b87a8ea596d3674aa63434bb4864cc034cab3ef1ae21ee5c28c69f4bf40e

See more details on using hashes here.

File details

Details for the file dmlab2d-1.0.0_dev.9-cp39-cp39-macosx_13_0_arm64.whl.

File metadata

File hashes

Hashes for dmlab2d-1.0.0_dev.9-cp39-cp39-macosx_13_0_arm64.whl
Algorithm Hash digest
SHA256 852b7e5b5215191123961b204d114cfc3704350fa0a92898a1ebebde420d4717
MD5 12415abf69e815b2c02dbb8056b5e264
BLAKE2b-256 8a5f16dde488b9c21aca8e87a4c16551df6c30cd79757710cb1d88fddd47186c

See more details on using hashes here.

File details

Details for the file dmlab2d-1.0.0_dev.9-cp39-cp39-macosx_12_0_x86_64.whl.

File metadata

File hashes

Hashes for dmlab2d-1.0.0_dev.9-cp39-cp39-macosx_12_0_x86_64.whl
Algorithm Hash digest
SHA256 5b1fe4c18a51da1ea9c45a1b01585386677505f7d01ba7e4e404db614caf262b
MD5 e683c69e9234222edaff3f3a79c6824a
BLAKE2b-256 e29d68b9cc77d1da414cce9b5dd49ef089f988c9b8298daca84a5b95fedd1268

See more details on using hashes here.

File details

Details for the file dmlab2d-1.0.0_dev.9-cp39-cp39-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for dmlab2d-1.0.0_dev.9-cp39-cp39-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 0cd61062f9de015070fd4596037d7c14260ab643d146236689dd57ab35853733
MD5 5fc9019034c436c1cecbd31d11968d77
BLAKE2b-256 4407e37e713ead8dbc9aff04026e6c051c78c212bb7cdc50dd9cfe4ccdb727ef

See more details on using hashes here.

File details

Details for the file dmlab2d-1.0.0_dev.9-cp39-cp39-macosx_11_0_x86_64.whl.

File metadata

File hashes

Hashes for dmlab2d-1.0.0_dev.9-cp39-cp39-macosx_11_0_x86_64.whl
Algorithm Hash digest
SHA256 de4edba98ddd66a7c26b10dfb7315bf62768c5060b13f909ac24298adde60c3e
MD5 e36e03b969b6a05833b6ac792b5ec1b2
BLAKE2b-256 631e5bcfba9680db27aaf60ffcbbb1229d43f7f9539c88eb86241811c704938c

See more details on using hashes here.

File details

Details for the file dmlab2d-1.0.0_dev.9-cp38-cp38-manylinux_2_35_x86_64.whl.

File metadata

File hashes

Hashes for dmlab2d-1.0.0_dev.9-cp38-cp38-manylinux_2_35_x86_64.whl
Algorithm Hash digest
SHA256 e7b10d3faea953087a4c801f0705cfd7c41a43d0eb54ce79b49b4d0a88aa2b1a
MD5 012796f51dc9c576246af9f802bdd75c
BLAKE2b-256 f8caf92a8edd9055b6ac568db865ecd6abfad9843e22258c0581e3a97372f6db

See more details on using hashes here.

File details

Details for the file dmlab2d-1.0.0_dev.9-cp38-cp38-macosx_13_0_x86_64.whl.

File metadata

File hashes

Hashes for dmlab2d-1.0.0_dev.9-cp38-cp38-macosx_13_0_x86_64.whl
Algorithm Hash digest
SHA256 5fe1c41329ab0b8adbbdc641c54ccbaa344cb21eb5ee9ff219eed774b08e36ff
MD5 125b780df7476143e86191892a8f5c7b
BLAKE2b-256 3b517b0b075e0a6307e555591ef3a8420ed429fea22a1e302f9d4bac5c980397

See more details on using hashes here.

File details

Details for the file dmlab2d-1.0.0_dev.9-cp38-cp38-macosx_13_0_arm64.whl.

File metadata

File hashes

Hashes for dmlab2d-1.0.0_dev.9-cp38-cp38-macosx_13_0_arm64.whl
Algorithm Hash digest
SHA256 cfc4f871573938e2e940885b1b8830ac11b6262140f8802c2be7562f49cffc20
MD5 16e9d7d307eadeac860d6a83f7b07a6f
BLAKE2b-256 f282b34fa126c31a64d5f26e7c91b06b46a3d5a66e1d84b619699889a14fb875

See more details on using hashes here.

File details

Details for the file dmlab2d-1.0.0_dev.9-cp38-cp38-macosx_12_0_x86_64.whl.

File metadata

File hashes

Hashes for dmlab2d-1.0.0_dev.9-cp38-cp38-macosx_12_0_x86_64.whl
Algorithm Hash digest
SHA256 c018ee3d32fe34caaa43187cad26c513b35a03f55d06ca10bc45f117182578a7
MD5 16900018cb22b8d8e4e8090fd17f3e1c
BLAKE2b-256 66ffdfb1ba130ebe988d78fb60748d1b20051e0e766484f117dbd93f3e4c61d7

See more details on using hashes here.

File details

Details for the file dmlab2d-1.0.0_dev.9-cp38-cp38-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for dmlab2d-1.0.0_dev.9-cp38-cp38-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 a3fd797871ff5679b8ef5911739386b9f4282388e956c36fdca291dc27ef73c3
MD5 1cc98f9f9252f040742ff9435c5f81ae
BLAKE2b-256 69e4f703f8efeb8f9d6c728f1dfb79ecf62ba96f0d9a60933eabc6f7aa18e2bd

See more details on using hashes here.

File details

Details for the file dmlab2d-1.0.0_dev.9-cp38-cp38-macosx_11_0_x86_64.whl.

File metadata

File hashes

Hashes for dmlab2d-1.0.0_dev.9-cp38-cp38-macosx_11_0_x86_64.whl
Algorithm Hash digest
SHA256 6630ba8d6916d20369ea7face89884508d91dbd8e053a21670a06fb6549064fa
MD5 1c5826f60c1ebb29e4684c26b256ab9b
BLAKE2b-256 8b24f43212c5d55b946555b5f71cec6f90599a9e45e60e94cbf5bb23dcb59af0

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page