Skip to main content

Tools for tracking differential privacy budgets

Project description

Differential Privacy Accounting

This directory contains tools for tracking differential privacy budgets, available as part of the Google differential privacy library.

The set of DpEvent classes allow you to describe complex differentially private mechanisms such as Laplace and Gaussian, subsampling mechanisms, and their compositions. The PrivacyAccountant classes can ingest DpEvents and return the ε, δ of the composite mechanism. Privacy Loss Distributions (PLDs) and RDP accounting are currently supported.

More detailed definitions and references about PLDs can be found in our supplementary pdf document.

We test this library on Linux with Python version 3.7. If you experience any problems, please file an issue on GitHub, also for other platforms or Python versions.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

dp-accounting-0.1.2.tar.gz (69.2 kB view hashes)

Uploaded Source

Built Distribution

dp_accounting-0.1.2-py3-none-any.whl (82.4 kB view hashes)

Uploaded Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page