Skip to main content

Python utilities used by Deep Procedural Intelligence

Project description

DPU Utilities

Build Status

This contains a set of utilities used across projects of the DPU team.

Installation

pip install dpu-utils

Overview of Utilities:

Generic Utilities:

  • dpu_utils.utils.RichPath a convenient way of using both paths and Azure paths in your code.
  • dpu_utils.utils.*Iterator iterator wrappers that can parallelize their iteration in other threads/processes.
  • dpu_utils.utils.{load,save}_json[l]_gz convenience methods for loading .json[l].gz from the filesystem.
  • dpu_utils.utils.git_tag_run that tags the current working directory git the state of the code.
  • dpu_utils.utils.run_and_debug when an exception happens, start a debug session. Usually a wrapper of __main__.
  • dpu_utils.utils.ChunkWriter that helps writing chunks to the output.

TensorFlow Utilities:

  • dpu_utils.tfutils.GradRatioLoggingOptimizer a wrapper around optimizers that logs the ratios of grad norms to parameter norms.
  • dpu_utils.tfutils.unsorted_segment_logsumexp
  • dpu_utils.tfutils.unsorted_segment_log_softmax
  • dpu_utils.tfutils.TFVariableSaver save TF variables in an object that can be pickled.

General Machine Learning Utilities:

  • dpu_utils.mlutils.CharTensorizer for character-level tensorization.
  • dpu_utils.mlutils.Vocabulary a str to int vocabulary for machine learning models

TensorFlow Models:

  • dpu_utils.tfmodels.SparseGGNN a sparse GGNN implementation.
  • dpu_utils.tfmodels.AsyncGGNN an asynchronous GGNN implementation.

Code-related Utilities

  • dpu_utils.codeutils.split_identifier_into_parts() split identifiers into subtokens on CamelCase and snake_case.
  • dpu_utils.codeutils.{Lattice, CSharpLattice} represent lattices and some useful operations in Python.
  • dpu_utils.codeutils.get_language_keywords() that retrieves the keyword tokens for many programming languages.
  • dpu_utils.codeutils.deduplication.DuplicateDetector that detects duplicates in codebases.

Command-line tools

Approximate Duplicate Code Detection

You can use the deduplicationcli command to detect duplicates in pre-processed source code, by invoking

 $ deduplicationcli DATA_PATH OUT_JSON

where DATA_PATH is a file containing tokenized .jsonl.gz files and OUT_JSON is the target output file. For more options look at --help.

An exact (but usually slower) version of this can be found here along with code to tokenize Java, C#, Python and JavaScript into the relevant formats.

Tests

Run the unit tests

python setup.py test

Generate code coverage reports

# pip install coverage
coverage run --source dpu_utils/ setup.py test && \
  coverage html

The resulting HTML file will be in htmlcov/index.html.

Contributing

This project welcomes contributions and suggestions. Most contributions require you to agree to a Contributor License Agreement (CLA) declaring that you have the right to, and actually do, grant us the rights to use your contribution. For details, visit https://cla.microsoft.com.

When you submit a pull request, a CLA-bot will automatically determine whether you need to provide a CLA and decorate the PR appropriately (e.g., label, comment). Simply follow the instructions provided by the bot. You will only need to do this once across all repos using our CLA.

This project has adopted the Microsoft Open Source Code of Conduct. For more information see the Code of Conduct FAQ or contact opencode@microsoft.com with any additional questions or comments.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

dpu_utils-0.1.25.tar.gz (28.2 kB view details)

Uploaded Source

Built Distribution

dpu_utils-0.1.25-py2.py3-none-any.whl (39.1 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file dpu_utils-0.1.25.tar.gz.

File metadata

  • Download URL: dpu_utils-0.1.25.tar.gz
  • Upload date:
  • Size: 28.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.5.0.1 requests/2.21.0 setuptools/39.0.1 requests-toolbelt/0.8.0 tqdm/4.29.1 CPython/3.6.6

File hashes

Hashes for dpu_utils-0.1.25.tar.gz
Algorithm Hash digest
SHA256 e6b4a73eea9abc2c71fe88cd0a6e21d0b6b933cffc1f75158f30220b77748a32
MD5 45d5716608009784edaf61db10136717
BLAKE2b-256 73741de65ae00c80e6cb23deb6eb2e057f3d3635b99b0f1c7a470204db078e83

See more details on using hashes here.

File details

Details for the file dpu_utils-0.1.25-py2.py3-none-any.whl.

File metadata

  • Download URL: dpu_utils-0.1.25-py2.py3-none-any.whl
  • Upload date:
  • Size: 39.1 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.5.0.1 requests/2.21.0 setuptools/39.0.1 requests-toolbelt/0.8.0 tqdm/4.29.1 CPython/3.6.6

File hashes

Hashes for dpu_utils-0.1.25-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 8b974f5e923ae51f5f86abce453b7544ccd201a29e412917bef10b643b120942
MD5 efa990eba992ccf26549e7263e1630cf
BLAKE2b-256 78dddf74acff6f49b6b1ec89e551239b6088197d2f0c64541d59220695991ff9

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page