Skip to main content

Wrapper for Great Expectations to fit the requirements of the Gemeente Amsterdam.

Project description

Introduction

This repository contains functions that will ease the use of Great Expectations. Users can input data and data quality rules and get results in return.

DISCLAIMER: The package is in MVP phase

Getting started

Install the dq suite on your compute, for example by running the following code in your workspace:

pip install dq-suite-amsterdam
import dq_suite

Load your data in dataframes, give them a table_name, and create a list of all dataframes:

df = spark.read.csv(csv_path+file_name, header=True, inferSchema=True) #example using csv
df.table_name = "showcase_table"
dfs = [df]
  • Define 'dfs' as a list of dataframes that require a dq check
  • Define 'dq_rules' as a JSON as shown in dq_rules_example.json in this repo
  • Define a name for your dq check, in this case "showcase"
results, brontabel_df, bronattribute_df, dqRegel_df = dq_suite.df_check(dfs, dq_rules, "showcase")

Known exceptions

The functions can run on Databricks using a Personal Compute Cluster or using a Job Cluster. Using a Shared Compute Cluster will results in an error, as it does not have the permissions that Great Expectations requires.

Updates

Version 0.1: Run a DQ check for a dataframe

Version 0.2: Run a DQ check for multiple dataframes

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

dq_suite_amsterdam-0.3.0.tar.gz (5.3 kB view details)

Uploaded Source

Built Distribution

dq_suite_amsterdam-0.3.0-py3-none-any.whl (6.3 kB view details)

Uploaded Python 3

File details

Details for the file dq_suite_amsterdam-0.3.0.tar.gz.

File metadata

  • Download URL: dq_suite_amsterdam-0.3.0.tar.gz
  • Upload date:
  • Size: 5.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for dq_suite_amsterdam-0.3.0.tar.gz
Algorithm Hash digest
SHA256 5e6b551d4a815194c3c92418dedeef358263f49fb74b738b08dd81446fc05031
MD5 85d3cb1c8592cc36ba00a1a68f1c2357
BLAKE2b-256 64126a6cec779ca9b2a60db2dfaa75b49e40b09350b15192c0231af653916479

See more details on using hashes here.

File details

Details for the file dq_suite_amsterdam-0.3.0-py3-none-any.whl.

File metadata

File hashes

Hashes for dq_suite_amsterdam-0.3.0-py3-none-any.whl
Algorithm Hash digest
SHA256 8b8b9ec75cea9a79427899273f436d822f5576e48b50e8cafefd25b25747fb7c
MD5 cacbee0e7a07fdf13e1c973fb7a4edad
BLAKE2b-256 34f205432188b28fdf55dfadfc3e94839620b824c268d90202f9646e04aea4e3

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page