Skip to main content

Wrapper for Great Expectations to fit the requirements of the Gemeente Amsterdam.

Project description

Introduction

This repository contains functions that will ease the use of Great Expectations. Users can input data and data quality rules and get results in return.

DISCLAIMER: The package is in MVP phase

Getting started

Install the dq suite on your compute, for example by running the following code in your workspace:

pip install dq-suite-amsterdam
import dq_suite

Load your data in dataframes, give them a table_name, and create a list of all dataframes:

df = spark.read.csv(csv_path+file_name, header=True, inferSchema=True) #example using csv
df.table_name = "showcase_table"
dfs = [df]
  • Define 'dfs' as a list of dataframes that require a dq check
  • Define 'dq_rules' as a JSON as shown in dq_rules_example.json in this repo
  • Define a name for your dq check, in this case "showcase"
results, brontabel_df, bronattribute_df, dqRegel_df = dq_suite.df_check(dfs, dq_rules, "showcase")

Known exceptions

The functions can run on Databricks using a Personal Compute Cluster or using a Job Cluster. Using a Shared Compute Cluster will results in an error, as it does not have the permissions that Great Expectations requires.

Updates

Version 0.1: Run a DQ check for a dataframe

Version 0.2: Run a DQ check for multiple dataframes

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

dq_suite_amsterdam-0.3.1.tar.gz (5.3 kB view details)

Uploaded Source

Built Distribution

dq_suite_amsterdam-0.3.1-py3-none-any.whl (6.3 kB view details)

Uploaded Python 3

File details

Details for the file dq_suite_amsterdam-0.3.1.tar.gz.

File metadata

  • Download URL: dq_suite_amsterdam-0.3.1.tar.gz
  • Upload date:
  • Size: 5.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for dq_suite_amsterdam-0.3.1.tar.gz
Algorithm Hash digest
SHA256 569ce7b627f8a1d5df9fde87f5adde0262d1b219a498e6964b63d4ea6a0ce180
MD5 e4c07ac831128062f131302af4bda00f
BLAKE2b-256 1e43b839a83e12dc2dc752fa99e82a979842520104fdedbb1606bcf86b041ff5

See more details on using hashes here.

File details

Details for the file dq_suite_amsterdam-0.3.1-py3-none-any.whl.

File metadata

File hashes

Hashes for dq_suite_amsterdam-0.3.1-py3-none-any.whl
Algorithm Hash digest
SHA256 cedb1af561382f36e1bf936df2d0f001763ca30781f3fdf84efb65426eee1d47
MD5 d172a9ea0f2ba28d6b95775c0cd225fe
BLAKE2b-256 96593f616ac13e1b512877a9345167292e8041dc19eadb1ba726be662a5cbafd

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page