Skip to main content

Web Client for Visualizing Pandas Objects

Project description

image0

Live Demo


CircleCI PyPI ReadTheDocs codecov Downloads

What is it?

D-Tale was born out a conversion from SAS to Python. What was originally a perl script wrapper on top of SAS’s insight function is now a lightweight web client on top of Pandas dat structures. D-Tale is the combination of a Flask back-end and a React front-end to bring you an easy way to view & analyze Pandas data structures. Currently this tool supports such Pandas objects as DataFrame, Series, MultiIndex, DatetimeIndex & RangeIndex. It integrates seamlessly with ipython notebooks & python/ipython terminals.

Contents

Getting Started

PyCharm

jupyter

image8

image9

Setup/Activate your environment and install the egg

Python 3

# create a virtualenv, if you haven't already created one
$ python3 -m venv ~/pyenvs/dtale
$ source ~/pyenvs/dtale/bin/activate

# install dtale egg (important to use the "--upgrade" every time you install so it will grab the latest version)
$ pip install --upgrade dtale

Python 2

# create a virtualenv, if you haven't already created one
$ python -m virtualenv ~/pyenvs/dtale
$ source ~/pyenvs/dtale/bin/activate

# install dtale egg (important to use the "--upgrade" every time you install so it will grab the latest version)
$ pip install --upgrade dtale

Now you will have to ability to use D-Tale from the command-line or within a python-enabled terminal

Python Terminal

This comes courtesy of PyCharm image10 Feel free to invoke python or ipython directly and use the commands in the screenshot above and it should work

Additional functions available programatically

import dtale
import pandas as pd

df = pd.DataFrame([dict(a=1,b=2,c=3)])

# Assigning a reference to a running D-Tale process
d = dtale.show(df)

# Accessing data associated with D-Tale process
tmp = d.data.copy()
tmp['d'] = 4

# Altering data associated with D-Tale process
# FYI: this will clear any front-end settings you have at the time for this process (filter, sorts, formatting)
d.data = tmp

# Shutting down D-Tale process
d.kill()

# using Python's `webbrowser` package it will try and open your server's default browser to this process
d.open_browser()

# There is also some helpful metadata about the process
d._data_id  # the process's data identifier
d._url  # the url to access the process

d2 = dtale.get_instance(d._data_id)  # returns a new reference to the instance running at that data_id

dtale.instances()  # returns a dictionary of all instances available, this would be { 1: ... }

Jupyter Notebook

Within any jupyter (ipython) notebook executing a cell like this will display a small instance of D-Tale in the output cell. Here are some examples:

dtale.show

assignment

instance

image14

image15

image16

If you are running ipython<=5.0 then you also have the ability to adjust the size of your output cell for the most recent instance displayed:

One thing of note is that alot of the modal popups you see in the standard browser version will now open separate browser windows for spacial convienence:

|Column Menus|Correlations|Describe|Histogram|Charts|Instances| |:——:|:——:|:——:|:——:|:——:|:——:| |image17|image18|image19|image20|image21|image22| ### Command-line Base CLI options (run dtale --help to see all options available)

Prop

Description

--host

the name of the host you would like to use (most likely not needed since socket.gethostname() should figure this out)

--port

the port you would like to assign to your D-Tale instance

--name

an optional name you can assign to your D-Tale instance (this will be displayed in the <title> & Instances popup)

--debug

turn on Flask’s “debug” mode for your D-Tale instance

--no-reaper

flag to turn off auto-reaping subprocess (kill D-Tale instances after an hour of inactivity), good for long-running displays

--open-browser

flag to automatically open up your server’s default browser to your D-Tale instance

--force

flag to force D-Tale to try an kill any pre-existing process at the port you’ve specified so it can use it

Loading data from arctic

dtale --arctic-host mongodb://localhost:27027 --arctic-library jdoe.my_lib --arctic-node my_node --arctic-start 20130101 --arctic-end 20161231

Loading data from CSV

dtale --csv-path /home/jdoe/my_csv.csv --csv-parse_dates date

Loading data from a Custom loader - Using the DTALE_CLI_LOADERS environment variable, specify a path to a location containing some python modules - Any python module containing the global variables LOADER_KEY & LOADER_PROPS will be picked up as a custom loader - LOADER_KEY: the key that will be associated with your loader. By default you are given arctic & csv (if you use one of these are your key it will override these) - LOADER_PROPS: the individual props available to be specified. - For example, with arctic we have host, library, node, start & end. - If you leave this property as an empty list your loader will be treated as a flag. For example, instead of using all the arctic properties we would simply specify --arctic (this wouldn’t work well in arctic’s case since it depends on all those properties) - You will also need to specify a function with the following signature def find_loader(kwargs) which returns a function that returns a dataframe or None - Here is an example of a custom loader:

from dtale.cli.clickutils import get_loader_options

'''
  IMPORTANT!!! This global variable is required for building any customized CLI loader.
  When find loaders on startup it will search for any modules containing the global variable LOADER_KEY.
'''
LOADER_KEY = 'testdata'
LOADER_PROPS = ['rows', 'columns']


def test_data(rows, columns):
    import pandas as pd
    import numpy as np
    import random
    from past.utils import old_div
    from pandas.tseries.offsets import Day
    from dtale.utils import dict_merge
    import string

    now = pd.Timestamp(pd.Timestamp('now').date())
    dates = pd.date_range(now - Day(364), now)
    num_of_securities = max(old_div(rows, len(dates)), 1)  # always have at least one security
    securities = [
        dict(security_id=100000 + sec_id, int_val=random.randint(1, 100000000000),
             str_val=random.choice(string.ascii_letters) * 5)
        for sec_id in range(num_of_securities)
    ]
    data = pd.concat([
        pd.DataFrame([dict_merge(dict(date=date), sd) for sd in securities])
        for date in dates
    ], ignore_index=True)[['date', 'security_id', 'int_val', 'str_val']]

    col_names = ['Col{}'.format(c) for c in range(columns)]
    return pd.concat([data, pd.DataFrame(np.random.randn(len(data), columns), columns=col_names)], axis=1)


# IMPORTANT!!! This function is required for building any customized CLI loader.
def find_loader(kwargs):
    test_data_opts = get_loader_options(LOADER_KEY, kwargs)
    if len([f for f in test_data_opts.values() if f]):
        def _testdata_loader():
            return test_data(int(test_data_opts.get('rows', 1000500)), int(test_data_opts.get('columns', 96)))

        return _testdata_loader
    return None

In this example we simplying building a dataframe with some dummy data based on dimensions specified on the command-line: - --testdata-rows - --testdata-columns

Here’s how you would use this loader:

DTALE_CLI_LOADERS=./path_to_loaders bash -c 'dtale --testdata-rows 10 --testdata-columns 5'

UI

Once you have kicked off your D-Tale session please copy & paste the link on the last line of output in your browser image23

Dimensions/Main Menu

The information in the upper right-hand corner gives grid dimensions image24 - lower-left => row count - upper-right => column count - clicking the triangle displays the menu of standard functions (click outside menu to close it) image25

Selecting/Deselecting Columns

  • to select a column, simply click on the column header (to deselect, click the column header again)

  • You’ll notice that the columns you’ve selected will display in the top of your browser image26

For Developers

Cloning

Clone the code (git clone ssh://git@github.com:manahl/dtale.git), then start the backend server:

$ git clone ssh://git@github.com:manahl/dtale.git
# install the dependencies
$ python setup.py develop
# start the server
$ python dtale --csv-path /home/jdoe/my_csv.csv --csv-parse_dates date

You can also run dtale from PyDev directly.

You will also want to import javascript dependencies and build the source:

$ npm install
# 1) a persistent server that serves the latest JS:
$ npm run watch
# 2) or one-off build:
$ npm run build

Running tests

The usual npm test command works:

$ npm test

You can run individual test files:

$ TEST=static/__tests__/dtale/DataViewer-base-test.jsx npm run test-file

Linting

You can lint all the JS and CSS to confirm there’s nothing obviously wrong with it:

$ npm run lint -s

You can also lint individual JS files:

$ npm run lint-js-file -s -- static/dtale/DataViewer.jsx

Formatting JS

You can auto-format code as follows:

$ npm run format

Docker Development

You can build python 27-3 & run D-Tale as follows:

$ yarn run build
$ docker-compose build dtale_2_7
$ docker run -it --network host dtale_2_7:latest
$ python
>>> import pandas as pd
>>> df = pd.DataFrame([dict(a=1,b=2,c=3)])
>>> import dtale
>>> dtale.show(df)

Then view your D-Tale instance in your browser using the link that gets printed

You can build python 36-1 & run D-Tale as follows:

$ yarn run build
$ docker-compose build dtale_3_6
$ docker run -it --network host dtale_3_6:latest
$ python
>>> import pandas as pd
>>> df = pd.DataFrame([dict(a=1,b=2,c=3)])
>>> import dtale
>>> dtale.show(df)

Then view your D-Tale instance in your browser using the link that gets printed

Startup Behavior

Here’s a little background on how the dtale.show() function works: - by default it will look for ports between 40000 & 49000, but you can change that range by specifying the environment variables DTALE_MIN_PORT & DTALE_MAX_PORT - think of sessions as python consoles or jupyter notebooks

  1. Session 1 executes dtale.show(df) our state is:

Session

Port

Active Data IDs

URL(s)

1

40000

1

http://localhost:40000/dtale/main/1

  1. Session 1 executes dtale.show(df) our state is:

Session

Port

Active Data IDs

URL(s)

1

40000

1,2

http://localhost:40000/dtale/main/[1,2]

  1. Session 2 executes dtale.show(df) our state is:

Session

Port

Active Data IDs

URL(s)

1

40000

1,2

http://localhost:40000/dtale/main/[1,2]

2

40001

1

http://localhost:40001/dtale/main/1

  1. Session 1 executes dtale.show(df, port=40001, force=True) our state is:

Session

Port

Active Data IDs

URL(s)

1

40001

1,2,3

http://localhost:40001/dtale/main/[1,2,3]

  1. Session 3 executes dtale.show(df) our state is:

Session

Port

Active Data IDs

URL(s)

1

40001

1,2,3

http://localhost:40001/dtale/main/[1,2,3]

3

40000

1

http://localhost:40000/dtale/main/1

  1. Session 2 executes dtale.show(df) our state is:

Session

Port

Active Data IDs

URL(s)

1

40001

1,2,3

http://localhost:40001/dtale/main/[1,2,3]

3

40000

1

http://localhost:40000/dtale/main/1

2

40002

1

http://localhost:40002/dtale/main/1

  1. Session 4 executes dtale.show(df, port=8080) our state is:

Session

Port

Active Data IDs

URL(s)

1

40001

1,2,3

http://localhost:40001/dtale/main/[1,2,3]

3

40000

1

http://localhost:40000/dtale/main/1

2

40002

1

http://localhost:40002/dtale/main/1

4

8080

1

http://localhost:8080/dtale/main/1

  1. Session 1 executes dtale.get_instance(1).kill() our state is:

Session

Port

Active Data IDs

URL(s)

1

40001

2,3

http://localhost:40001/dtale/main/[2,3]

3

40000

1

http://localhost:40000/dtale/main/1

2

40002

1

http://localhost:40002/dtale/main/1

4

8080

1

http://localhost:8080/dtale/main/1

  1. Session 5 sets DTALE_MIN_RANGE to 30000 and DTALE_MAX_RANGE 39000 and executes dtale.show(df) our state is:

Session

Port

Active Data ID(s)

URL(s)

1

40001

2,3

http://localhost:40001/dtale/main/[2,3]

3

40000

1

http://localhost:40000/dtale/main/1

2

40002

1

http://localhost:40002/dtale/main/1

4

8080

1

http://localhost:8080/dtale/main/1

5

30000

1

http://localhost:30000/dtale/main/1

Documentation

Have a look at the detailed documentation.

Requirements

D-Tale works with:

  • Back-end

    • arctic

    • Flask

    • Flask-Caching

    • Flask-Compress

    • flasgger

    • Pandas

    • scipy

    • six

  • Front-end

    • react-virtualized

    • chart.js

Acknowledgements

D-Tale has been under active development at Man Numeric since 2019.

Original concept and implementation: Andrew Schonfeld

Contributors:

Contributions welcome!

License

D-Tale is licensed under the GNU LGPL v2.1. A copy of which is included in LICENSE

Changelog

1.6.3 (2019-12-23)

  • updated versions of packages in yarn.lock due to issue with chart.js box & whisker plots

1.6.2 (2019-12-23)

  • #40: loading initial chart as non-line in chart builder

  • #41: double clicking cells in correlation grid for scatter will cause chart not to display

  • “Open Popup” button for ipython iframes

  • column width resizing on sorting

  • additional int/float descriptors (sum, median, mode, var, sem, skew, kurt)

  • wordcloud chart type

1.6.1 (2019-12-19)

  • bugfix for url display when running from command-line

1.6.0 (2019-12-19)

  • charts integration

    • the ability to look at data in line, bar, stacked bar & pie charts

    • the ability to group & aggregate data within the charts

  • direct ipython iframes to correlations & charts pages with pre-selected inputs

  • the ability to access instances from code by data id dtale.get_instance(data_id)

  • view all active data instances dtale.instances()

1.5.1 (2019-12-12)

  • conversion of new flask instance for each dtale.show call to serving all data associated with one parent process under the same flask instance unless otherwise specified by the user (the force parameter)

1.5.0 (2019-12-02)

  • ipython integration

    • ipython output cell adjustment

    • column-wise menu support

    • browser window popups for: Correlations, Coverage, Describe, Histogram & Instances

1.4.1 (2019-11-20)

  • #32: unpin jsonschema by moving flasgger to extras_require

1.4.0 (2019-11-19)

  • Correlations Pearson Matrix filters

  • “name” display in title tab

  • “Heat Map” toggle

  • dropped unused “Flask-Caching” requirement

1.3.7 (2019-11-12)

  • Bug fixes for:

    • #28: “Instances” menu option will now be displayed by default

    • #29: add hints to how users can navigate the correlations popup

    • add “unicode” as a string classification for column width calculation

1.3.6 (2019-11-08)

  • Bug fixes for:

    • choose between pandas.corr & numpy.corrcoef depending on presence of NaNs

    • hide timeseries correlations when date columns only contain one day

1.3.5 (2019-11-07)

  • Bug fixes for:

    • duplicate loading of histogram data

    • string serialization failing when mixing future.str & str in scatter function

1.3.4 (2019-11-07)

  • updated correlation calculation to use numpy.corrcoef for performance purposes

  • github rebranding from manahl -> man-group

1.3.3 (2019-11-05)

  • hotfix for failing test under certain versions of future package

1.3.2 (2019-11-05)

  • Bug fixes for:

    • display of histogram column information

    • reload of hidden “processes” input when loading instances data

    • correlations json failures on string conversion

1.3.1 (2019-10-29)

  • fix for incompatible str types when directly altering state of data in running D-Tale instance

1.3.0 (2019-10-29)

  • webbrowser integration (the ability to automatically open a webbrowser upon calling dtale.show())

  • flag for hiding the “Shutdown” button for long-running demos

  • “Instances” navigator popup for viewing all activate D-Tale instances for the current python process

1.2.0 (2019-10-24)

  • #20: fix for data being overriden with each new instance

  • #21: fix for displaying timestamps if they exist

  • calling show() now returns an object which can alter the state of a process

    • accessing/altering state through the data property

    • shutting down a process using the kill() function

1.1.1 (2019-10-23)

  • #13: fix for auto-detection of column widths for strings and floats

1.1.0 (2019-10-08)

  • IE support

  • Describe & About popups

  • Custom CLI support

1.0.0 (2019-09-06)

  • Initial public release

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

dtale-1.6.3.tar.gz (11.2 MB view details)

Uploaded Source

Built Distributions

dtale-1.6.3-py3.6.egg (11.3 MB view details)

Uploaded Source

dtale-1.6.3-py2.py3-none-any.whl (11.3 MB view details)

Uploaded Python 2 Python 3

dtale-1.6.3-py2.7.egg (11.3 MB view details)

Uploaded Source

File details

Details for the file dtale-1.6.3.tar.gz.

File metadata

  • Download URL: dtale-1.6.3.tar.gz
  • Upload date:
  • Size: 11.2 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/None requests/2.22.0 setuptools/39.0.1 requests-toolbelt/0.9.1 tqdm/4.41.0 CPython/3.6.5

File hashes

Hashes for dtale-1.6.3.tar.gz
Algorithm Hash digest
SHA256 8e767711a5bfc0495df4a1e7534832d25acd4649436f1f087f274c7b3cb93251
MD5 93b935b557c0b3223004df9e2c82e95c
BLAKE2b-256 54d9d49f276bfd4ff15a9a0d755aaeba0194db564671b66693fd0c92da6b1139

See more details on using hashes here.

File details

Details for the file dtale-1.6.3-py3.6.egg.

File metadata

  • Download URL: dtale-1.6.3-py3.6.egg
  • Upload date:
  • Size: 11.3 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/None requests/2.22.0 setuptools/39.0.1 requests-toolbelt/0.9.1 tqdm/4.41.0 CPython/3.6.5

File hashes

Hashes for dtale-1.6.3-py3.6.egg
Algorithm Hash digest
SHA256 006d3f61ea37b013013175081b3bd4053ff2794d571709124ec6c3d609087946
MD5 cf8aab2ab1e3bd90886f5457be394bc3
BLAKE2b-256 eb5d692b3e46977083f703ef1eb477b5a2be46545c5bf5551e2b123ede5ace15

See more details on using hashes here.

File details

Details for the file dtale-1.6.3-py2.py3-none-any.whl.

File metadata

  • Download URL: dtale-1.6.3-py2.py3-none-any.whl
  • Upload date:
  • Size: 11.3 MB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/None requests/2.22.0 setuptools/39.0.1 requests-toolbelt/0.9.1 tqdm/4.41.0 CPython/3.6.5

File hashes

Hashes for dtale-1.6.3-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 084bd59f474fe4ad1e6c501a85e8281f9feb85904ea878afc81eccd61d32bb01
MD5 1b6e8c2ee652b242ad5d028528a55a9d
BLAKE2b-256 0e7f6f4921a83d1ee2c57ee8b1e4ada9fa885448ad1d900ebbab56ecf0f3b6b6

See more details on using hashes here.

File details

Details for the file dtale-1.6.3-py2.7.egg.

File metadata

  • Download URL: dtale-1.6.3-py2.7.egg
  • Upload date:
  • Size: 11.3 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/None requests/2.22.0 setuptools/28.8.0 requests-toolbelt/0.9.1 tqdm/4.41.0 CPython/2.7.13

File hashes

Hashes for dtale-1.6.3-py2.7.egg
Algorithm Hash digest
SHA256 573fb963fcdadc728ebd0a5e916953ebe66d70fbc5df8a2f36106ffa4e2e2694
MD5 be08a2a30681fb457a48ba358efa4a2b
BLAKE2b-256 8a1efc93b95569d1fb07e84693608f46b3f34e79d758e548af32316d3141d0f7

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page