Skip to main content

DynamORM is a Python object & relation mapping library for Amazon's DynamoDB service.

Project description

DynamORM

https://img.shields.io/travis/NerdWalletOSS/dynamorm.svg https://img.shields.io/codecov/c/github/NerdWalletOSS/dynamorm.svg Latest PyPI version

This package is a work in progress – Feedback / Suggestions / Etc welcomed!

Python + DynamoDB ♡

DynamORM (pronounced Dynamo-R-M) is a Python object & relation mapping library for Amazon’s DynamoDB service.

The project has two goals:

  1. Abstract away the interaction with the underlying DynamoDB libraries. Python access to the DynamoDB service has evolved quickly, from Dynamo v1 in boto to Dynamo v2 in boto and then the new resource model in boto3. By providing a consistent interface that will feel familiar to users of other Python ORMs (SQLAlchemy, Django, Peewee, etc) means that we can always provide best-practices for queries and take advantages of new features without needing to refactor any application logic.

  2. Delegate schema validation and serialization to more focused libraries. Building “ORM” semantics is “easy”, doing data validation and serialization is not. We support both Marshmallow and Schematics for building your object schemas. You can take advantage of the full power of these libraries as they are transparently exposed in your code.

Supported Schema Validation Libraries

Example

import datetime

from dynamorm import DynaModel, GlobalIndex, ProjectAll

# In this example we'll use Marshmallow, but you can also use Schematics too!
# You can see that you have to import the schema library yourself, it is not abstracted at all
from marshmallow import fields

# Our objects are defined as DynaModel classes
class Book(DynaModel):
    # Define our DynamoDB properties
    class Table:
        name = 'prod-books'
        hash_key = 'isbn'
        read = 25
        write = 5

    class ByAuthor(GlobalIndex):
        name = 'by-author'
        hash_key = 'author'
        read = 25
        write = 5
        projection = ProjectAll()

    # Define our data schema, each property here will become a property on instances of the Book class
    class Schema:
        isbn = fields.String(validate=validate_isbn)
        title = fields.String()
        author = fields.String()
        publisher = fields.String()

        # NOTE: Marshmallow uses the `missing` keyword during deserialization, which occurs when we save
        # an object to Dynamo and the attr has no value, versus the `default` keyword, which is used when
        # we load a document from Dynamo and the value doesn't exist or is null.
        year = fields.Number(missing=lambda: datetime.datetime.utcnow().year)


# Store new documents directly from dictionaries
Book.put({
    "isbn": "12345678910",
    "title": "Foo",
    "author": "Mr. Bar",
    "publisher": "Publishorama"
})

# Work with the classes as objects.  You can pass attributes from the schema to the constructor
foo = Book(isbn="12345678910", title="Foo", author="Mr. Bar",
           publisher="Publishorama")
foo.save()

# Or assign attributes
foo = Book()
foo.isbn = "12345678910"
foo.title = "Foo"
foo.author = "Mr. Bar"
foo.publisher = "Publishorama"

# In all cases they go through Schema validation, calls to .put or .save can result in ValidationError
foo.save()

# You can then fetch, query and scan your tables.
# Get on the hash key, and/or range key
book = Book.get(isbn="12345678910")

# Update items, with conditions
# Here our condition ensures we don't have a race condition where someone else updates the title first
book.update(title='Corrected Foo', conditions=(title=book.title,))

# Query based on the keys
Book.query(isbn__begins_with="12345")

# Scan based on attributes
Book.scan(author="Mr. Bar")
Book.scan(author__ne="Mr. Bar")

# Query based on indexes
Book.ByAuthor.query(author="Mr. Bar")

Documentation

Full documentation is built from the sources each build and can be found online at:

https://nerdwalletoss.github.io/dynamorm/

The tests/ also contain the most complete documentation on how to actually use the library, so you are encouraged to read through them to really familiarize yourself with some of the more advanced concepts and use cases.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

dynamorm-0.5.1.tar.gz (21.8 kB view details)

Uploaded Source

Built Distribution

dynamorm-0.5.1-py2.py3-none-any.whl (27.7 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file dynamorm-0.5.1.tar.gz.

File metadata

  • Download URL: dynamorm-0.5.1.tar.gz
  • Upload date:
  • Size: 21.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for dynamorm-0.5.1.tar.gz
Algorithm Hash digest
SHA256 a5435cc7bfec5f6b23b67854c2960fd2063f9e45f7e9cc2d985fb3929debc8e9
MD5 8e91a7b09e7c9f6acc7f102f997ed292
BLAKE2b-256 dd23a2e3329902fb269e35d3cfec9c1b59fa496d549d572156605c15d0369799

See more details on using hashes here.

File details

Details for the file dynamorm-0.5.1-py2.py3-none-any.whl.

File metadata

File hashes

Hashes for dynamorm-0.5.1-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 557ecbca667caed51a309420b6f019918125b1e0702bf64a42503c0c3f49b0f7
MD5 0407f112e3f450af2c7ad6c9b182b795
BLAKE2b-256 d7879a386c2bcc63c0b1051ae06072963f451de0a610ab54f89bd7e6f0bb0cb2

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page