Library for machine learning on physical tensors
Project description
e3md is an open-source code for building E(3)-equivariant interatomic potentials written in JAX, based on the tensorial library.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
e3md-0.1.0.tar.gz
(14.8 kB
view details)
Built Distribution
e3md-0.1.0-py3-none-any.whl
(16.9 kB
view details)
File details
Details for the file e3md-0.1.0.tar.gz
.
File metadata
- Download URL: e3md-0.1.0.tar.gz
- Upload date:
- Size: 14.8 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.0 CPython/3.10.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 928eec7f81633b4ebb0f0972ed7d41918f4d4aa0c311e12f5590661dbf81bb49 |
|
MD5 | 2bd34d58a0167e8f2fe82ca1485cebc9 |
|
BLAKE2b-256 | bb4a1b99d120feccd6268d9d37dac51229abb7fe64bf29965f81bb286231e0c5 |
File details
Details for the file e3md-0.1.0-py3-none-any.whl
.
File metadata
- Download URL: e3md-0.1.0-py3-none-any.whl
- Upload date:
- Size: 16.9 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.0 CPython/3.10.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 18cb33dedc20eb844885799e2c960ad1827ab7f63bbb53daabd8c632e439adf4 |
|
MD5 | 19e6bb509638c494f30a79ed72f031a8 |
|
BLAKE2b-256 | f50a12d36d1c9b076f79d84248c58b43c08f9bf577f927515550322ddbceeeea |