Skip to main content

Seismic viewer for numpy

Project description

EasyQC

Seismic Viewer for numpy arrays using pyqtgraph.

Usage Instructions

The goal is to provide an interactive seismic viewer at the python prompt. NB: if you use ipython use the %gui qt magic command before !

Keyboard Shortcuts

  • ctrl + A: increase display gain by +3dB
  • ctrl + Z: deacrease display gain by +3dB
  • ctrl + P: propagates display accross all windows (same window size, same axis, same gain)

Minimum working example to display a numpy array.

import numpy as np
import scipy.signal

from easyqc.gui import viewseis

ntr, ns, sr, dx, v1 = (500, 2000, 0.002, 5, 2000)
data = np.zeros((ntr, ns), np.float32)
data[:, 500:600] = scipy.signal.ricker(100, 4)

# create a record with 400 traces and 2500 samples
noise = np.random.randn(ntr, ns) / 10
# create an arbitrary layout of 2 receiver lines of 200 sensors
a, b = np.meshgrid(np.arange(ntr / 2) * 8 + 2000, np.arange(2) * 50 + 5000)
# the header is a dictionary of numpy arrays, each entry being the same length as the number of traces
header = {'receiver_line': b.flatten(), 'receiver_number': a.flatten()}

# show the array with the header
fig0 = viewseis(data, si=.002, h=header, title='clean')
fig1 = viewseis(data + noise, si=.002, h=header, title='noisy')

Install Instructions

1) From pypi using pip:

pip install easyqc

2) From sources using pip:

I suggest to use a virtual environment and install in development mode (in-place)

git clone https://github.com/oliche/easyqc.git
cd easyqc
pip install -e .

3) From sources using anaconda

I suggest to install a conda environment and run from sources in development mode.

Installation

git clone https://github.com/oliche/easyqc.git
conda env create -f ./seisview/env_seisview.yaml
conda activate iblenv
conda develop ./easyqc

Update

conda env update --file conda_easyqc.yaml --prune

Or for a complete clean-up:

conda env list
conda env remove -n easyqc

And follow the install instructions above.

Contribution

Pypi Release checklist:

flake8
rm -fR dist
rm -fR build
python setup.py sdist bdist_wheel
#twine upload dist/*
twine upload --repository-url https://test.pypi.org/legacy/ dist/*
pip install -U easyqc

Test wheel:

virtualenv easyqc --python=3.8
source ./easyqc/bin/activate
pip install -i https://test.pypi.org/simple/ easyqc

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

easyqc-0.0.14.tar.gz (8.9 kB view details)

Uploaded Source

Built Distribution

easyqc-0.0.14-py3-none-any.whl (8.5 kB view details)

Uploaded Python 3

File details

Details for the file easyqc-0.0.14.tar.gz.

File metadata

  • Download URL: easyqc-0.0.14.tar.gz
  • Upload date:
  • Size: 8.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.10.0 pkginfo/1.7.0 requests/2.25.0 requests-toolbelt/0.9.1 tqdm/4.54.0 CPython/3.8.2

File hashes

Hashes for easyqc-0.0.14.tar.gz
Algorithm Hash digest
SHA256 83a6c7ca8574766aabc9ba82826efd01cb5d134b5985524feea6c491c5c27218
MD5 6606a5b71b829611e0e4cf8aed85fc16
BLAKE2b-256 c752c8ca0121d5ba53f45b34925693e34153b9d2ebfe1b6d927c29345130f6bc

See more details on using hashes here.

File details

Details for the file easyqc-0.0.14-py3-none-any.whl.

File metadata

  • Download URL: easyqc-0.0.14-py3-none-any.whl
  • Upload date:
  • Size: 8.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.10.0 pkginfo/1.7.0 requests/2.25.0 requests-toolbelt/0.9.1 tqdm/4.54.0 CPython/3.8.2

File hashes

Hashes for easyqc-0.0.14-py3-none-any.whl
Algorithm Hash digest
SHA256 051b041031bf81580eca79418164e8021a35cd541fc5b5458ee9d96dcb615de3
MD5 f63d941330b87e8cc280af403d1c0238
BLAKE2b-256 b83563a75eafc8b0cea1bc5a1900a313c4cd8b5bab7f01e49c3598eb603915f0

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page