Skip to main content

Seismic viewer for numpy

Project description

EasyQC

Seismic Viewer for numpy arrays using pyqtgraph.

Usage Instructions

The goal is to provide an interactive seismic viewer at the python prompt. NB: if you use ipython use the %gui qt magic command before !

Keyboard Shortcuts

  • ctrl + A: increase display gain by +3dB
  • ctrl + Z: deacrease display gain by +3dB
  • ctrl + P: propagates display accross all windows (same window size, same axis, same gain)
  • up/down/right/left arrows: pan using keyboard

Minimum working example to display a numpy array.

import numpy as np
import scipy.signal

from easyqc.gui import viewseis

ntr, ns, sr, dx, v1 = (500, 2000, 0.002, 5, 2000)
data = np.zeros((ntr, ns), np.float32)
data[:, 500:600] = scipy.signal.ricker(100, 4)

# create a record with 400 traces and 2500 samples
noise = np.random.randn(ntr, ns) / 10
# create an arbitrary layout of 2 receiver lines of 200 sensors
a, b = np.meshgrid(np.arange(ntr / 2) * 8 + 2000, np.arange(2) * 50 + 5000)
# the header is a dictionary of numpy arrays, each entry being the same length as the number of traces
header = {'receiver_line': b.flatten(), 'receiver_number': a.flatten()}

# show the array with the header
fig0 = viewseis(data, si=.002, h=header, title='clean')
fig1 = viewseis(data + noise, si=.002, h=header, title='noisy')

Install Instructions

1) From pypi using pip:

pip install easyqc

2) From sources using pip:

I suggest to use a virtual environment and install in development mode (in-place)

git clone https://github.com/oliche/easyqc.git
cd easyqc
pip install -e .

3) From sources using anaconda

I suggest to install a conda environment and run from sources in development mode.

Installation

git clone https://github.com/oliche/easyqc.git
conda env create -f conda_easyqc.yaml
conda activate iblenv
conda develop ./easyqc

Update

conda env update --file conda_easyqc.yaml --prune

Or for a complete clean-up:

conda env list
conda env remove -n easyqc

And follow the install instructions above.

Contribution

Pypi Release checklist:

flake8
rm -fR dist
rm -fR build
python setup.py sdist bdist_wheel
twine upload dist/*
#twine upload --repository-url https://test.pypi.org/legacy/ dist/*

Test wheel:

virtualenv easyqc --python=3.8
source ./easyqc/bin/activate
pip install easyqc
#pip install -i https://test.pypi.org/simple/ easyqc  # doesnt' seem to install deps

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

easyqc-0.2.0.tar.gz (12.7 kB view details)

Uploaded Source

Built Distribution

easyqc-0.2.0-py3-none-any.whl (12.3 kB view details)

Uploaded Python 3

File details

Details for the file easyqc-0.2.0.tar.gz.

File metadata

  • Download URL: easyqc-0.2.0.tar.gz
  • Upload date:
  • Size: 12.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.10.0 pkginfo/1.7.0 requests/2.25.0 requests-toolbelt/0.9.1 tqdm/4.54.0 CPython/3.8.2

File hashes

Hashes for easyqc-0.2.0.tar.gz
Algorithm Hash digest
SHA256 f852e37024468d9b2601ad6349c8000d54d20b41cd7d4007d5dd261d593c08c8
MD5 343ee58587232a5b8f198523c9f1d6b1
BLAKE2b-256 9de4cf953066cdb70bc070ef81bba1fcc2fb90d50b0701b0caad21c82f29b2e1

See more details on using hashes here.

File details

Details for the file easyqc-0.2.0-py3-none-any.whl.

File metadata

  • Download URL: easyqc-0.2.0-py3-none-any.whl
  • Upload date:
  • Size: 12.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.10.0 pkginfo/1.7.0 requests/2.25.0 requests-toolbelt/0.9.1 tqdm/4.54.0 CPython/3.8.2

File hashes

Hashes for easyqc-0.2.0-py3-none-any.whl
Algorithm Hash digest
SHA256 4dda2cba4a00200bd6e825513c82f8f192c5142ec3b169fc3b93c5c09b01ed37
MD5 58caf2a715ed564ce45909d97375fd55
BLAKE2b-256 0762f7fe18a878832dc92c9614852d0d2ad2fad6c3d66f7a0dfc184f80062483

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page