Skip to main content

Seismic viewer for numpy

Project description

EasyQC

Seismic Viewer for numpy arrays using pyqtgraph.

Usage Instructions

The goal is to provide an interactive seismic viewer at the python prompt. NB: if you use ipython use the %gui qt magic command before !

Keyboard Shortcuts

  • ctrl + A: increase display gain by +3dB
  • ctrl + Z: deacrease display gain by +3dB
  • ctrl + P: take screenshot to clipboard
  • ctrl + P: propagates display accross all windows (same window size, same axis, same gain)
  • ctrl + S: captures screenshot of the plot area in the clipboard
  • up/down/right/left arrows: pan using keyboard

Minimum working example to display a numpy array.

import numpy as np
import scipy.signal

from easyqc.gui import viewseis

ntr, ns, sr, dx, v1 = (500, 2000, 0.002, 5, 2000)
data = np.zeros((ntr, ns), np.float32)
data[:, 500:600] = scipy.signal.ricker(100, 4)

# create a record with 400 traces and 2500 samples
noise = np.random.randn(ntr, ns) / 10
# create an arbitrary layout of 2 receiver lines of 200 sensors
a, b = np.meshgrid(np.arange(ntr / 2) * 8 + 2000, np.arange(2) * 50 + 5000)
# the header is a dictionary of numpy arrays, each entry being the same length as the number of traces
header = {'receiver_line': b.flatten(), 'receiver_number': a.flatten()}

# show the array with the header
fig0 = viewseis(data, si=.002, h=header, title='clean')
fig1 = viewseis(data + noise, si=.002, h=header, title='noisy')

Install Instructions

1) From pypi using pip:

pip install easyqc

2) From sources using pip:

I suggest to use a virtual environment and install in development mode (in-place)

git clone https://github.com/oliche/easyqc.git
cd easyqc
pip install -e .

3) From sources using anaconda

I suggest to install a conda environment and run from sources in development mode.

Installation

git clone https://github.com/oliche/easyqc.git
conda env create -f conda_easyqc.yaml
conda activate iblenv
conda develop ./easyqc

Update

conda env update --file conda_easyqc.yaml --prune

Or for a complete clean-up:

conda env list
conda env remove -n easyqc

And follow the install instructions above.

Contribution

Pypi Release checklist:

flake8
rm -fR dist
rm -fR build
python setup.py sdist bdist_wheel
twine upload dist/*
#twine upload --repository-url https://test.pypi.org/legacy/ dist/*

Test wheel:

virtualenv easyqc --python=3.8
source ./easyqc/bin/activate
pip install easyqc
#pip install -i https://test.pypi.org/simple/ easyqc  # doesnt' seem to install deps

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

easyqc-0.7.0.tar.gz (16.0 kB view details)

Uploaded Source

Built Distribution

easyqc-0.7.0-py3-none-any.whl (15.6 kB view details)

Uploaded Python 3

File details

Details for the file easyqc-0.7.0.tar.gz.

File metadata

  • Download URL: easyqc-0.7.0.tar.gz
  • Upload date:
  • Size: 16.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.4.2 requests/2.22.0 setuptools/45.2.0 requests-toolbelt/0.8.0 tqdm/4.30.0 CPython/3.8.10

File hashes

Hashes for easyqc-0.7.0.tar.gz
Algorithm Hash digest
SHA256 93811aec26491b94514993174f3a9f13206913279ddd55927faca16349bbe482
MD5 8258f6158c1767e26e1fe7f6b0b9b2d7
BLAKE2b-256 20dc28644f79816cb500abf416be2a89f947180769b520db685f3164de055a4b

See more details on using hashes here.

File details

Details for the file easyqc-0.7.0-py3-none-any.whl.

File metadata

  • Download URL: easyqc-0.7.0-py3-none-any.whl
  • Upload date:
  • Size: 15.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.4.2 requests/2.22.0 setuptools/45.2.0 requests-toolbelt/0.8.0 tqdm/4.30.0 CPython/3.8.10

File hashes

Hashes for easyqc-0.7.0-py3-none-any.whl
Algorithm Hash digest
SHA256 44c3ca88110b095d5250e55daef646cdc673d169c188f72d677f3a3555c3af1c
MD5 bf60dcafefcf4769364a5242ae7774c7
BLAKE2b-256 5d6d64506a0917e9fff5e2ec79ffd172802b3dbd6ff5bdf3209c1b3935cb1f76

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page