Skip to main content

Wraps ECMWF tools (experimental)

Project description

ecmwflibs

A Python package that wraps some of ECMWF libraries to be used by Python interfaces to ECMWF software.

The snippet of code below should return the path to the ecCodes shared library.

import ecmwflibs
lib = ecmwflibs.find("eccodes")

You can get the versions of libraries:

import ecmwflibs
print(ecmwflibs.versions())
{'eccodes': '2.19.0', 'magics': '4.4.3', 'ecmwflibs': '0.4.5'}

Possible issues

If you get this message on Windows:

DLL load failed while importing _ecmwflibs: The specified module could not be found.

this means that the C++ runtime library is not installed. Please download and install vc_redist.x86.exe or vc_redist.x64.exe from https://support.microsoft.com/en-us/help/2977003/the-latest-supported-visual-c-downloads.

Acknowledgements

ecmwflibs comes packaged with some third-party open source libraries which are dependencies of Magics and ecCodes. To display the list of embedded libraries and their copyright notices and/or licenses, please type:

python3 -m ecmwflibs credits

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

ecmwflibs-0.6.3-cp311-cp311-win_amd64.whl (44.4 MB view details)

Uploaded CPython 3.11 Windows x86-64

ecmwflibs-0.6.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (78.4 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

ecmwflibs-0.6.3-cp311-cp311-macosx_13_0_arm64.whl (42.9 MB view details)

Uploaded CPython 3.11 macOS 13.0+ ARM64

ecmwflibs-0.6.3-cp311-cp311-macosx_10_9_universal2.whl (44.2 MB view details)

Uploaded CPython 3.11 macOS 10.9+ universal2 (ARM64, x86-64)

ecmwflibs-0.6.3-cp310-cp310-win_amd64.whl (44.4 MB view details)

Uploaded CPython 3.10 Windows x86-64

ecmwflibs-0.6.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (78.4 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

ecmwflibs-0.6.3-cp310-cp310-macosx_13_0_arm64.whl (42.9 MB view details)

Uploaded CPython 3.10 macOS 13.0+ ARM64

ecmwflibs-0.6.3-cp310-cp310-macosx_11_0_x86_64.whl (44.2 MB view details)

Uploaded CPython 3.10 macOS 11.0+ x86-64

ecmwflibs-0.6.3-cp39-cp39-win_amd64.whl (44.4 MB view details)

Uploaded CPython 3.9 Windows x86-64

ecmwflibs-0.6.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (78.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

ecmwflibs-0.6.3-cp39-cp39-macosx_13_0_arm64.whl (42.9 MB view details)

Uploaded CPython 3.9 macOS 13.0+ ARM64

ecmwflibs-0.6.3-cp39-cp39-macosx_11_0_x86_64.whl (44.2 MB view details)

Uploaded CPython 3.9 macOS 11.0+ x86-64

ecmwflibs-0.6.3-cp38-cp38-win_amd64.whl (44.4 MB view details)

Uploaded CPython 3.8 Windows x86-64

ecmwflibs-0.6.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (78.4 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

ecmwflibs-0.6.3-cp38-cp38-macosx_11_0_x86_64.whl (44.2 MB view details)

Uploaded CPython 3.8 macOS 11.0+ x86-64

ecmwflibs-0.6.3-cp37-cp37m-win_amd64.whl (44.4 MB view details)

Uploaded CPython 3.7m Windows x86-64

ecmwflibs-0.6.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (78.4 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

ecmwflibs-0.6.3-cp37-cp37m-macosx_11_0_x86_64.whl (44.2 MB view details)

Uploaded CPython 3.7m macOS 11.0+ x86-64

ecmwflibs-0.6.3-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (78.4 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

File details

Details for the file ecmwflibs-0.6.3-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for ecmwflibs-0.6.3-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 400cf97dea913c3032b6a191fb2c19c363c1b1f622d5cacb1035750ffdbde8bd
MD5 c8cab10c94ae1f9a299ef63c32c83720
BLAKE2b-256 382b0611f8fb19a1878fa75a07ef46c025b5228e09d26fbaa8f25b47affa4a08

See more details on using hashes here.

File details

Details for the file ecmwflibs-0.6.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for ecmwflibs-0.6.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8f0e641b12152bc329fef7a63bc0a8432d3869094a28743ab5d2e80d928a337b
MD5 358704351b7222d4a67324f611af011d
BLAKE2b-256 e0349c6b3ed7cde581983b99f0f0677cac76c6f3354f0eefdbad0584ba92aad4

See more details on using hashes here.

File details

Details for the file ecmwflibs-0.6.3-cp311-cp311-macosx_13_0_arm64.whl.

File metadata

File hashes

Hashes for ecmwflibs-0.6.3-cp311-cp311-macosx_13_0_arm64.whl
Algorithm Hash digest
SHA256 258ce3b7c5a1e4381ba5aa9b4c1a6c4d3d8336ff7fb40a9b3509e4c42cf3bae8
MD5 7298b8913137cd3c25d54ef5ae4229be
BLAKE2b-256 afa0d59eab9167b90c11f416a992b1258aa240e1761842ea548d300ca09f9fea

See more details on using hashes here.

File details

Details for the file ecmwflibs-0.6.3-cp311-cp311-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for ecmwflibs-0.6.3-cp311-cp311-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 d949bb1dac472b9ae9800897ed72894240d0a6a484ce496af3624d4f02ebfb61
MD5 2ccfc94b07c31974148f04b4a4ca726b
BLAKE2b-256 156d499d92a412aa82c9d7030566a4f9df208fdd95af4fce863d842189a94383

See more details on using hashes here.

File details

Details for the file ecmwflibs-0.6.3-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for ecmwflibs-0.6.3-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 3179af77d24dd7f8e498f25c18efcd1f0f5b908f7dcecc35eca9e1e5b7501bfc
MD5 5c3e2e24b9f8beade75e98821b1d650a
BLAKE2b-256 2ca4c7ccebf5122d4d0cdc129755c8bfbf460a318c167b96bbb17bf4db8b7d78

See more details on using hashes here.

File details

Details for the file ecmwflibs-0.6.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for ecmwflibs-0.6.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f1a7b575b4bc6ab37d4e7d0d1aa95e1f62d18f7749f338eb139ac449ede912b5
MD5 8ab6d0b75fc403ecfd77ff56352877c8
BLAKE2b-256 192ec645ad0ac5e60166c3ba1d9141039e1c2fa3049998811d75251c3e19356c

See more details on using hashes here.

File details

Details for the file ecmwflibs-0.6.3-cp310-cp310-macosx_13_0_arm64.whl.

File metadata

File hashes

Hashes for ecmwflibs-0.6.3-cp310-cp310-macosx_13_0_arm64.whl
Algorithm Hash digest
SHA256 34df32f27c379423075d37d420872a6cf3f07a4ef56a84116f0280b1ba3e8fb4
MD5 aed486d029792e6daeae182e56da7362
BLAKE2b-256 f45379b1cff0c8e2cb3783fcfdc229bf5839b35f84514730c6b8e59e7bcde4bb

See more details on using hashes here.

File details

Details for the file ecmwflibs-0.6.3-cp310-cp310-macosx_11_0_x86_64.whl.

File metadata

File hashes

Hashes for ecmwflibs-0.6.3-cp310-cp310-macosx_11_0_x86_64.whl
Algorithm Hash digest
SHA256 8afef3352805f0c25f5b8d99d28cb70c2e05ee1cb7f8c6905d77f32fcebdb2a9
MD5 712c343b9e889840a8d79f34e2f1202f
BLAKE2b-256 daf35d460af516106fd10750597cc09b43f93ed25cb4fed7a61cdceb38c3f6d6

See more details on using hashes here.

File details

Details for the file ecmwflibs-0.6.3-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: ecmwflibs-0.6.3-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 44.4 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.18

File hashes

Hashes for ecmwflibs-0.6.3-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 ed9b383dcfe5f2d8d0facde564006dc3676ea82114e7b25c357dfa82380a17fb
MD5 6e487be938ad29629449e91821467992
BLAKE2b-256 421a6b6f9d30143fa4e5a53ca34800b8d7ab400dbcb5c3a53bfc52afa31c06b0

See more details on using hashes here.

File details

Details for the file ecmwflibs-0.6.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for ecmwflibs-0.6.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b33933e036300fa89e8e42254ba2c617a81698e0d074ecd227969eb94614a196
MD5 549f51ecc3f1666c21aa3b9130b48752
BLAKE2b-256 01600c531521aac41b3d40e81bed469034ea22e41d4b489509b7ec4c804b744b

See more details on using hashes here.

File details

Details for the file ecmwflibs-0.6.3-cp39-cp39-macosx_13_0_arm64.whl.

File metadata

File hashes

Hashes for ecmwflibs-0.6.3-cp39-cp39-macosx_13_0_arm64.whl
Algorithm Hash digest
SHA256 e36a1316b3b2536a40edb4cee75e76b381999ee4199951a33fe4594a3d2f3994
MD5 3357cf405f2f6cfc761c170878fb9543
BLAKE2b-256 eb0131bb8755636ff4894a43ef2f55d75e6387bc89f38bd56a1febc5f9e878e6

See more details on using hashes here.

File details

Details for the file ecmwflibs-0.6.3-cp39-cp39-macosx_11_0_x86_64.whl.

File metadata

File hashes

Hashes for ecmwflibs-0.6.3-cp39-cp39-macosx_11_0_x86_64.whl
Algorithm Hash digest
SHA256 6ce03cb52db120e664f5234c978285e0c86bf7b0553a0f56e223c7b77db5ff4e
MD5 3f6bbfcad401826cc29eb360d5bf6316
BLAKE2b-256 bf0c502c208134df6c90c8b4776e5798749f60ad0225bbde32b8731160314f24

See more details on using hashes here.

File details

Details for the file ecmwflibs-0.6.3-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: ecmwflibs-0.6.3-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 44.4 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.8.18

File hashes

Hashes for ecmwflibs-0.6.3-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 c10a26154890120bac755866915f91eb94f910b32193777c121a1ac559dcc923
MD5 14ac5cade55f155a0f7c8dde37afe14a
BLAKE2b-256 033dee4e77d73e301e4376f506dd1978e56ce639b595a7467ff7db5db2091c0f

See more details on using hashes here.

File details

Details for the file ecmwflibs-0.6.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for ecmwflibs-0.6.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 952a12cdd8f12987f43c55eab62f5d25950ae5f49959dece5e554b7cbd872425
MD5 f8b6683f164a94a9c1d1d44091c38cc5
BLAKE2b-256 6823205d8e6034b91f6f25245b72cd0bb40bff65b42a6540708c961567972907

See more details on using hashes here.

File details

Details for the file ecmwflibs-0.6.3-cp38-cp38-macosx_11_0_x86_64.whl.

File metadata

File hashes

Hashes for ecmwflibs-0.6.3-cp38-cp38-macosx_11_0_x86_64.whl
Algorithm Hash digest
SHA256 fe30cf71d864992c86a65f6d4399cb5e1b84627b0639e488ec95b9a0c0303315
MD5 277574032f4fe32085ae473f18b7b8f1
BLAKE2b-256 cadc42e8468dcccc1773b2973f42e9ba63f9d31246781865be4af12fa7bf2ec1

See more details on using hashes here.

File details

Details for the file ecmwflibs-0.6.3-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for ecmwflibs-0.6.3-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 842d3c722ddfb16df23bf913be2d444aed91384b36a3b966d25e7051506ad945
MD5 5cce6ee404161ec834e603414f53ed30
BLAKE2b-256 36cf0ad68182586df6c1c50d7a248ce57507dd75e710f6ae9317ea6d3740fc53

See more details on using hashes here.

File details

Details for the file ecmwflibs-0.6.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for ecmwflibs-0.6.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6e1f0df4b15c477e4a28956ac12d0f2a8e4564b0a47be161f07fe9bdfdee5462
MD5 364cf3a17cf8a2a1e45e69701df6990a
BLAKE2b-256 d8604127be0ea4cc3db1056f2d4082f0d94c9f3774b05ef3766f3ac9204538c5

See more details on using hashes here.

File details

Details for the file ecmwflibs-0.6.3-cp37-cp37m-macosx_11_0_x86_64.whl.

File metadata

File hashes

Hashes for ecmwflibs-0.6.3-cp37-cp37m-macosx_11_0_x86_64.whl
Algorithm Hash digest
SHA256 74b943abc7ca7eede1e310e6b39c2bb2cf88198585dc07e3253bbcb3b816e00a
MD5 adb88ee9ef3eb888a4f5fe62bbcc8408
BLAKE2b-256 7e16732eeb18767054020fc15519181973b841f8ca45027e8d8e8a1c0b0d95e8

See more details on using hashes here.

File details

Details for the file ecmwflibs-0.6.3-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for ecmwflibs-0.6.3-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d9ee4eed1f8f2b577331767b30178f027838d232c58251093dc93de132afa477
MD5 ba92f26d7187973f16539936e576eddb
BLAKE2b-256 6766c6dca4fd5911dfa7838d6efe824aaef7f8ace549fa93b254032253581f96

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page