Skip to main content

Wraps ECMWF tools (experimental)

Project description

ecmwflibs

A Python package that wraps some of ECMWF libraries to be used by Python interfaces to ECMWF software.

The snippet of code below should return the path to the ecCodes shared library.

import ecmwflibs
lib = ecmwflibs.find("eccodes")

You can get the versions of libraries:

import ecmwflibs
print(ecmwflibs.versions())
{'eccodes': '2.19.0', 'magics': '4.4.3', 'ecmwflibs': '0.4.5'}

Possible issues

If you get this message on Windows:

DLL load failed while importing _ecmwflibs: The specified module could not be found.

this means that the C++ runtime library is not installed. Please download and install vc_redist.x86.exe or vc_redist.x64.exe from https://support.microsoft.com/en-us/help/2977003/the-latest-supported-visual-c-downloads.

Acknowledgements

ecmwflibs comes packaged with some third-party open source libraries which are dependencies of Magics and ecCodes. To display the list of embedded libraries and their copyright notices and/or licenses, please type:

python3 -m ecmwflibs credits

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

ecmwflibs-0.5.1-cp311-cp311-win_amd64.whl (43.6 MB view details)

Uploaded CPython 3.11 Windows x86-64

ecmwflibs-0.5.1-cp311-cp311-win32.whl (42.1 MB view details)

Uploaded CPython 3.11 Windows x86

ecmwflibs-0.5.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (76.0 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

ecmwflibs-0.5.1-cp311-cp311-macosx_13_0_arm64.whl (42.3 MB view details)

Uploaded CPython 3.11 macOS 13.0+ ARM64

ecmwflibs-0.5.1-cp311-cp311-macosx_10_9_universal2.whl (43.4 MB view details)

Uploaded CPython 3.11 macOS 10.9+ universal2 (ARM64, x86-64)

ecmwflibs-0.5.1-cp310-cp310-win_amd64.whl (43.6 MB view details)

Uploaded CPython 3.10 Windows x86-64

ecmwflibs-0.5.1-cp310-cp310-win32.whl (42.1 MB view details)

Uploaded CPython 3.10 Windows x86

ecmwflibs-0.5.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (76.0 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

ecmwflibs-0.5.1-cp310-cp310-macosx_13_0_arm64.whl (42.3 MB view details)

Uploaded CPython 3.10 macOS 13.0+ ARM64

ecmwflibs-0.5.1-cp310-cp310-macosx_11_0_x86_64.whl (43.4 MB view details)

Uploaded CPython 3.10 macOS 11.0+ x86-64

ecmwflibs-0.5.1-cp39-cp39-win_amd64.whl (43.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

ecmwflibs-0.5.1-cp39-cp39-win32.whl (42.1 MB view details)

Uploaded CPython 3.9 Windows x86

ecmwflibs-0.5.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (76.0 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

ecmwflibs-0.5.1-cp39-cp39-macosx_13_0_arm64.whl (42.3 MB view details)

Uploaded CPython 3.9 macOS 13.0+ ARM64

ecmwflibs-0.5.1-cp39-cp39-macosx_11_0_x86_64.whl (43.4 MB view details)

Uploaded CPython 3.9 macOS 11.0+ x86-64

ecmwflibs-0.5.1-cp38-cp38-win_amd64.whl (43.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

ecmwflibs-0.5.1-cp38-cp38-win32.whl (42.1 MB view details)

Uploaded CPython 3.8 Windows x86

ecmwflibs-0.5.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (76.0 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

ecmwflibs-0.5.1-cp38-cp38-macosx_13_0_arm64.whl (42.3 MB view details)

Uploaded CPython 3.8 macOS 13.0+ ARM64

ecmwflibs-0.5.1-cp38-cp38-macosx_10_15_x86_64.whl (43.4 MB view details)

Uploaded CPython 3.8 macOS 10.15+ x86-64

ecmwflibs-0.5.1-cp37-cp37m-win_amd64.whl (43.6 MB view details)

Uploaded CPython 3.7m Windows x86-64

ecmwflibs-0.5.1-cp37-cp37m-win32.whl (42.1 MB view details)

Uploaded CPython 3.7m Windows x86

ecmwflibs-0.5.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (76.0 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

ecmwflibs-0.5.1-cp37-cp37m-macosx_10_15_x86_64.whl (43.4 MB view details)

Uploaded CPython 3.7m macOS 10.15+ x86-64

File details

Details for the file ecmwflibs-0.5.1-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for ecmwflibs-0.5.1-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 a3eb79c07bcc004e7043e874100531d6247f679a122eaecf13973d826c21253a
MD5 6a142acfe901b6e95c3ff68ac60d7fc4
BLAKE2b-256 1823455ac750015c0dbd563519571f42434da803ff293454fda15b2810b62f7b

See more details on using hashes here.

File details

Details for the file ecmwflibs-0.5.1-cp311-cp311-win32.whl.

File metadata

  • Download URL: ecmwflibs-0.5.1-cp311-cp311-win32.whl
  • Upload date:
  • Size: 42.1 MB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.2

File hashes

Hashes for ecmwflibs-0.5.1-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 8e1b9366f404c2cb9415b580b05965d65bb846a2ae03e323c72754d4ad4c09e1
MD5 e48ff7cc2a7521d7de2d7ae49e76fb75
BLAKE2b-256 13109c0ff4d41e2fe91c6a58bfaa1e42dc74b0c4cf87277dc20be8fd354edfb0

See more details on using hashes here.

File details

Details for the file ecmwflibs-0.5.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for ecmwflibs-0.5.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8182d93e0e2e4bcd1dfeb609681cf1316d8a15a0a19180bee3a60c16c321cc37
MD5 fd5927672e62dc83d70a53bf3bffbf55
BLAKE2b-256 928591e741bca04ea14eab15e8301fe415c59bad7c46b2659a40fcffed4cc609

See more details on using hashes here.

File details

Details for the file ecmwflibs-0.5.1-cp311-cp311-macosx_13_0_arm64.whl.

File metadata

File hashes

Hashes for ecmwflibs-0.5.1-cp311-cp311-macosx_13_0_arm64.whl
Algorithm Hash digest
SHA256 c1c7340462f645f8db96454b835aedc938cee8bcca34718cd5acb6389f9e9061
MD5 f8661889e394cb0f3ca55dcfe6781fb7
BLAKE2b-256 de1e15b84fd5d7eb5974fd81707bcd35fe2cf4828712e1c8a51065442665c8b0

See more details on using hashes here.

File details

Details for the file ecmwflibs-0.5.1-cp311-cp311-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for ecmwflibs-0.5.1-cp311-cp311-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 a7516a26eacdb93aca54eff6ccc0567e5cb534fd082e6f3aa35fe765a2db1e0e
MD5 13435be6fab49806e516706661134a92
BLAKE2b-256 b7134669ad94747519c71fbefef28ab5a2ba84cc74f7df8f5ccd0e0207365006

See more details on using hashes here.

File details

Details for the file ecmwflibs-0.5.1-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for ecmwflibs-0.5.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 49ff70b93f1132a0c2d881582917c2a19d2ef2e7cae66dcae40cb70b47ec5428
MD5 bc144d796af51eb42088c20fa7023fb0
BLAKE2b-256 4352bab78ac656e1d096d28a1518ae2be36870e70bf33ac29e73bf9f9d29c204

See more details on using hashes here.

File details

Details for the file ecmwflibs-0.5.1-cp310-cp310-win32.whl.

File metadata

  • Download URL: ecmwflibs-0.5.1-cp310-cp310-win32.whl
  • Upload date:
  • Size: 42.1 MB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.10

File hashes

Hashes for ecmwflibs-0.5.1-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 ecf3b71991b51281a13f115e7e74553de25e809878c50c5bd922a68ecac5bf01
MD5 cbcc60c05144beac4ad906e15a48b71a
BLAKE2b-256 6bee2da1458ad4f52e85c5bf3d9aca313e680ed709955c82bbeab4280df2a49e

See more details on using hashes here.

File details

Details for the file ecmwflibs-0.5.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for ecmwflibs-0.5.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b376dbd397e7e3e97e2bc9ca14f5428c1a2b7d0069e53e645ad1bf22da111692
MD5 77354a0d83a0c208cfa69b6c9bee4598
BLAKE2b-256 7b2b97b583fbfd7bf2d9adf7f474fbbd6a0f5a863e43230a5734869453f3cdfa

See more details on using hashes here.

File details

Details for the file ecmwflibs-0.5.1-cp310-cp310-macosx_13_0_arm64.whl.

File metadata

File hashes

Hashes for ecmwflibs-0.5.1-cp310-cp310-macosx_13_0_arm64.whl
Algorithm Hash digest
SHA256 5d639d7145e44b6e1327978f45a2593b1652b439f38537f888e6fe4d83cc2458
MD5 d4addf3211613fc4a5ca63e604a4ecf0
BLAKE2b-256 a0690c40ed95c5a628267718d967c894ad1e7e7dc7990358edda687195a6a3b2

See more details on using hashes here.

File details

Details for the file ecmwflibs-0.5.1-cp310-cp310-macosx_11_0_x86_64.whl.

File metadata

File hashes

Hashes for ecmwflibs-0.5.1-cp310-cp310-macosx_11_0_x86_64.whl
Algorithm Hash digest
SHA256 53aad3db43f99130a357bc5ef60ac708b2a8cb925aedee7e744d44e4c82ec34b
MD5 99d693dbc1149b09d86adb3afec60678
BLAKE2b-256 ceaec0e1a38dc8d06903b40062e23fb048f0f44b9c4d7ab1e18c80f48af12c4c

See more details on using hashes here.

File details

Details for the file ecmwflibs-0.5.1-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: ecmwflibs-0.5.1-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 43.6 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for ecmwflibs-0.5.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 69723f6bddf83917f62cc2785374da8dd48f633f02c7ead5dab9626ce536c2a8
MD5 6ed315c91f82e9ad99873ac55e9f2237
BLAKE2b-256 924c04f822fbdd0bf606041d9fb664181c1fa7cd3076b5baaa6b38ec3f394fd1

See more details on using hashes here.

File details

Details for the file ecmwflibs-0.5.1-cp39-cp39-win32.whl.

File metadata

  • Download URL: ecmwflibs-0.5.1-cp39-cp39-win32.whl
  • Upload date:
  • Size: 42.1 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for ecmwflibs-0.5.1-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 34eb49acb0117aed14bcc8c5d576a4fcaed5ca43ff5836e02fa7b0ae88ec0e4f
MD5 00d53fd040a783402c69b6fa18c9c7d9
BLAKE2b-256 350937f4a050d8ffba4dba88919d2c2452ae6d3448b9292d538c9f8c82685fd6

See more details on using hashes here.

File details

Details for the file ecmwflibs-0.5.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for ecmwflibs-0.5.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0d43bdd4864921c359071de913bf27afe2c0915040c2d0d585e16ff1630b698b
MD5 acfad0ff9e4430b7cb183c2e95e999dd
BLAKE2b-256 57322144b5190d1938a3299c1ec59d99b56dbb7aa17566ae2e49493f9fa9b85a

See more details on using hashes here.

File details

Details for the file ecmwflibs-0.5.1-cp39-cp39-macosx_13_0_arm64.whl.

File metadata

File hashes

Hashes for ecmwflibs-0.5.1-cp39-cp39-macosx_13_0_arm64.whl
Algorithm Hash digest
SHA256 a8e9e181a54b33f6782e2442194c253f9848f389829b6e899d5eff70cf72a1cf
MD5 32b8b412691bd82768f3d77685d57148
BLAKE2b-256 4240f7c60777a15f071df7d137f0cfe61b3ca9e29f43b95b748342bbe6a4cf80

See more details on using hashes here.

File details

Details for the file ecmwflibs-0.5.1-cp39-cp39-macosx_11_0_x86_64.whl.

File metadata

File hashes

Hashes for ecmwflibs-0.5.1-cp39-cp39-macosx_11_0_x86_64.whl
Algorithm Hash digest
SHA256 23e1ad166ede1e3a9c50379be5c5448e84af9c5eac44ae551373886875c8df82
MD5 85fecf9c5a7dffe1af8a7ee779b99567
BLAKE2b-256 485c47a4e0a844d174b4b532dcf6103ce049bbde0e8748650efce85709bc26d8

See more details on using hashes here.

File details

Details for the file ecmwflibs-0.5.1-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: ecmwflibs-0.5.1-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 43.6 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.16

File hashes

Hashes for ecmwflibs-0.5.1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 03b5691eff68446c14b79243b33372657c71a103a21e53eb5505d00f9dccbe39
MD5 a10a9efb3870542abf552afea50a8a3a
BLAKE2b-256 d10e6438c017c8e9a0c716ccf427db4d40144755a70d5e732bc0e51575cf207d

See more details on using hashes here.

File details

Details for the file ecmwflibs-0.5.1-cp38-cp38-win32.whl.

File metadata

  • Download URL: ecmwflibs-0.5.1-cp38-cp38-win32.whl
  • Upload date:
  • Size: 42.1 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.16

File hashes

Hashes for ecmwflibs-0.5.1-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 ae64a75cbd4d4b2e8031d656950dfd6369cac78ea50f487cbc26c4cf8d476e48
MD5 6fadb33fc4c56f7df2252d56f5b94602
BLAKE2b-256 d29a53b70e55a65afb13d94be28a2f5f3ceb1a6c28e98a42c49565f644caeac6

See more details on using hashes here.

File details

Details for the file ecmwflibs-0.5.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for ecmwflibs-0.5.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1205bcad1dbc957a5e826eeab7b99b8c097f79fea7c64e6266a120eaf3a458c2
MD5 e045b0a94238d5b2d9c1b37426756138
BLAKE2b-256 642ad175365a57df2bdcb33f4f7f9e4f334113fbb8228b298bdea866b8680200

See more details on using hashes here.

File details

Details for the file ecmwflibs-0.5.1-cp38-cp38-macosx_13_0_arm64.whl.

File metadata

File hashes

Hashes for ecmwflibs-0.5.1-cp38-cp38-macosx_13_0_arm64.whl
Algorithm Hash digest
SHA256 5ce5a8b830ef321d534224707fa3b96d73a182879e239e9df05c43981462f6ed
MD5 6389a86c08d38c2575e8e4732b312071
BLAKE2b-256 23636b4736ae9e1d38da213f1f67e264abde509209747ee93b74a59010099323

See more details on using hashes here.

File details

Details for the file ecmwflibs-0.5.1-cp38-cp38-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for ecmwflibs-0.5.1-cp38-cp38-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 ddf33f13f8ed4cc3b24b6a8f4c87330bcb09afb7b35d351e2fb1d0ffc8cbd4df
MD5 861750dcdeaf1ee902728a8678a68609
BLAKE2b-256 f33265b4bab28fed78f335939576218b9d882e4e41c49cdb5e584dda4f9a8e23

See more details on using hashes here.

File details

Details for the file ecmwflibs-0.5.1-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for ecmwflibs-0.5.1-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 6c4a83a36f91abcca76e9d05dc2854d32bc0d130882fc416bf2bf744f9f7aa87
MD5 6cc2f4370c96c3fb6b6d60219a8e33ee
BLAKE2b-256 18681497376ccbeac127047b419f82a16a128b40fb3159c9ce438aabe588f1ce

See more details on using hashes here.

File details

Details for the file ecmwflibs-0.5.1-cp37-cp37m-win32.whl.

File metadata

  • Download URL: ecmwflibs-0.5.1-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 42.1 MB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.7.15

File hashes

Hashes for ecmwflibs-0.5.1-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 c690b3d58ca5fd3698951f857be6fbc00c501378fecb1e4278802f325f80f1e1
MD5 86a1f1bcb163d598785c7f3202bddfcd
BLAKE2b-256 b793e056194266df59d718ecf91ec40bd0bf9e927172715315e6a050fdac0060

See more details on using hashes here.

File details

Details for the file ecmwflibs-0.5.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for ecmwflibs-0.5.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f668e4d4c3145812e18eabd59fdacbeef248e0e92d9b4815493fe3231d6492fb
MD5 85cda61af2f5c15f8088bd20b819e1b8
BLAKE2b-256 b3ba99017d9ee3f10705bede0a3b48fa092e7a0e67e5a870a5c8e161f85b48ec

See more details on using hashes here.

File details

Details for the file ecmwflibs-0.5.1-cp37-cp37m-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for ecmwflibs-0.5.1-cp37-cp37m-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 bc1ab1857e30815cfc32666e9a8754f60e7bc86aec7d38e8e2dbfd1cffb45950
MD5 fc264c744cac960221fc4d887d8de39c
BLAKE2b-256 e3fae613ebda43b485cb9c0aa8fb6d9210a5beb3a6dd79d887226154a7e37c05

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page