Skip to main content

Wraps ECMWF tools (experimental)

Project description

ecmwflibs

A Python package that wraps some of ECMWF libraries to be used by Python interfaces to ECMWF software.

The snippet of code below should return the path to the ecCodes shared library.

import ecmwflibs
lib = ecmwflibs.find("eccodes")

You can get the versions of libraries:

import ecmwflibs
print(ecmwflibs.versions())
{'eccodes': '2.19.0', 'magics': '4.4.3', 'ecmwflibs': '0.4.5'}

Possible issues

If you get this message on Windows:

DLL load failed while importing _ecmwflibs: The specified module could not be found.

this means that the C++ runtime library is not installed. Please download and install vc_redist.x86.exe or vc_redist.x64.exe from https://support.microsoft.com/en-us/help/2977003/the-latest-supported-visual-c-downloads.

Acknowledgements

ecmwflibs comes packaged with some third-party open source libraries which are dependencies of Magics and ecCodes. To display the list of embedded libraries and their copyright notices and/or licenses, please type:

python3 -m ecmwflibs credits

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

ecmwflibs-0.6.1-cp311-cp311-win_amd64.whl (44.2 MB view details)

Uploaded CPython 3.11 Windows x86-64

ecmwflibs-0.6.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (78.4 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

ecmwflibs-0.6.1-cp311-cp311-macosx_13_0_arm64.whl (42.8 MB view details)

Uploaded CPython 3.11 macOS 13.0+ ARM64

ecmwflibs-0.6.1-cp311-cp311-macosx_10_9_universal2.whl (44.2 MB view details)

Uploaded CPython 3.11 macOS 10.9+ universal2 (ARM64, x86-64)

ecmwflibs-0.6.1-cp310-cp310-win_amd64.whl (44.2 MB view details)

Uploaded CPython 3.10 Windows x86-64

ecmwflibs-0.6.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (78.4 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

ecmwflibs-0.6.1-cp310-cp310-macosx_13_0_arm64.whl (42.8 MB view details)

Uploaded CPython 3.10 macOS 13.0+ ARM64

ecmwflibs-0.6.1-cp310-cp310-macosx_11_0_x86_64.whl (44.2 MB view details)

Uploaded CPython 3.10 macOS 11.0+ x86-64

ecmwflibs-0.6.1-cp39-cp39-win_amd64.whl (44.2 MB view details)

Uploaded CPython 3.9 Windows x86-64

ecmwflibs-0.6.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (78.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

ecmwflibs-0.6.1-cp39-cp39-macosx_13_0_arm64.whl (42.8 MB view details)

Uploaded CPython 3.9 macOS 13.0+ ARM64

ecmwflibs-0.6.1-cp39-cp39-macosx_11_0_x86_64.whl (44.2 MB view details)

Uploaded CPython 3.9 macOS 11.0+ x86-64

ecmwflibs-0.6.1-cp38-cp38-win_amd64.whl (44.2 MB view details)

Uploaded CPython 3.8 Windows x86-64

ecmwflibs-0.6.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (78.4 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

ecmwflibs-0.6.1-cp38-cp38-macosx_11_0_x86_64.whl (44.2 MB view details)

Uploaded CPython 3.8 macOS 11.0+ x86-64

ecmwflibs-0.6.1-cp37-cp37m-win_amd64.whl (44.2 MB view details)

Uploaded CPython 3.7m Windows x86-64

ecmwflibs-0.6.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (78.4 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

ecmwflibs-0.6.1-cp37-cp37m-macosx_11_0_x86_64.whl (44.2 MB view details)

Uploaded CPython 3.7m macOS 11.0+ x86-64

File details

Details for the file ecmwflibs-0.6.1-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for ecmwflibs-0.6.1-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 2764106e4a159487f7e7ca6883529c5d9529361e4762104b0549c71d846223f0
MD5 bd676d7445be2703432e10fded5aaef0
BLAKE2b-256 8cbd8ada05634819a87af7bac9d4fd5bf40e75ce23255a81ceb91df1f006cd37

See more details on using hashes here.

File details

Details for the file ecmwflibs-0.6.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for ecmwflibs-0.6.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f423adef6884b35753f19559a0bde60f9f6c54291a271a1e468dd0280cd2be88
MD5 03c2fe80b8afbb2583a59f1c4e442af1
BLAKE2b-256 5c364afbe68837c750f7c5600971b1874dbb84f2d6c3d2cefdcb25d7663d5080

See more details on using hashes here.

File details

Details for the file ecmwflibs-0.6.1-cp311-cp311-macosx_13_0_arm64.whl.

File metadata

File hashes

Hashes for ecmwflibs-0.6.1-cp311-cp311-macosx_13_0_arm64.whl
Algorithm Hash digest
SHA256 5475466ed565c995f25c30fb51e835373f716513629e9635db5512f438994a3e
MD5 ffc280a127eb0c66c374638bf7b81d7d
BLAKE2b-256 b65a1b888f15ebdbf3fc388c808e30b9f47bb5975a3d91ae19fe543aa1b3a44a

See more details on using hashes here.

File details

Details for the file ecmwflibs-0.6.1-cp311-cp311-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for ecmwflibs-0.6.1-cp311-cp311-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 0be5fa0bac96b40e02729b1b33fe9f720ea4b73e848d569d483787f5bf85092e
MD5 460ba7da5acede01f41dc317ed66e6bb
BLAKE2b-256 ee7ebfd0c890bf9573a85cfc5ddc515f08b8898693072bc2271937ffd83706d1

See more details on using hashes here.

File details

Details for the file ecmwflibs-0.6.1-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for ecmwflibs-0.6.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 03916b4bb59aca2fb0185860b8766ae2b868256af97ea274da24721c867c1cdf
MD5 7daa2bb410ea8f0f6d3f24cfc9db8980
BLAKE2b-256 e01443dbd6529e4b434dd7f587af2e315cdba62a8c90c499a00328c18261b5c8

See more details on using hashes here.

File details

Details for the file ecmwflibs-0.6.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for ecmwflibs-0.6.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e6ccdbddf1dfdf1ae6fe6e421590a9951d44648e30b2cf388f4429261aa2ab23
MD5 bcb055a73bff5047275cb16c95e1c0ce
BLAKE2b-256 b583f314420183e6e92d47fcbe78421b9384ce158d9d600fe433167ee3dca584

See more details on using hashes here.

File details

Details for the file ecmwflibs-0.6.1-cp310-cp310-macosx_13_0_arm64.whl.

File metadata

File hashes

Hashes for ecmwflibs-0.6.1-cp310-cp310-macosx_13_0_arm64.whl
Algorithm Hash digest
SHA256 a8112376123cf8cbfc130bf95b4641ee5a9a977d8179fac2b36619ff90a38851
MD5 834c3e8f59af79be1ad581b6105d4fa3
BLAKE2b-256 64c8dafda2d380ec155760b6e4326a88089a15acfdd2ef2c58254bd05c22b9d8

See more details on using hashes here.

File details

Details for the file ecmwflibs-0.6.1-cp310-cp310-macosx_11_0_x86_64.whl.

File metadata

File hashes

Hashes for ecmwflibs-0.6.1-cp310-cp310-macosx_11_0_x86_64.whl
Algorithm Hash digest
SHA256 b3a8499d81b5c1470ee057ca6909f93a9b1d29eee1a0aea540a0ed46fe63cf36
MD5 64d23b276d7618c4e47b6d3e24fcbafc
BLAKE2b-256 6fd0121783d54a23eddc899b03dd41f2ac39f28110ca08097a3a7790afb9fde8

See more details on using hashes here.

File details

Details for the file ecmwflibs-0.6.1-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: ecmwflibs-0.6.1-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 44.2 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.18

File hashes

Hashes for ecmwflibs-0.6.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 20f93779fb1c2750c3f9f5d3a5a4ca56a63ecdecb532141fbbeb08e7815de589
MD5 36738a6f2e82698ab83640ea9bfa767e
BLAKE2b-256 9a701fbfe72b8a81a2ff68b9a8fe6ffd5add51ccae6523e0387063d20c45011d

See more details on using hashes here.

File details

Details for the file ecmwflibs-0.6.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for ecmwflibs-0.6.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1cfc0810ab4d6c1e281e8e915c06e0516f40a9c9f0d4e0f996b84044c5465236
MD5 10b4f6e78b40d71c3b307616298b5f98
BLAKE2b-256 d171a80c2daa03ac6b57fbf46a2ac508efb5731e9ad39c4349a386d965612fdd

See more details on using hashes here.

File details

Details for the file ecmwflibs-0.6.1-cp39-cp39-macosx_13_0_arm64.whl.

File metadata

File hashes

Hashes for ecmwflibs-0.6.1-cp39-cp39-macosx_13_0_arm64.whl
Algorithm Hash digest
SHA256 cba8ce8f3b80bc1a8f788829761f441cc0f0f4aecbc46e3daee4b5b05e28d518
MD5 a002b355708651d824064bfc6d6825e5
BLAKE2b-256 b1bc9dbbec2f3120a8e7c8c8e286e4f14ba4526152f84f17e9eaea917aefb74d

See more details on using hashes here.

File details

Details for the file ecmwflibs-0.6.1-cp39-cp39-macosx_11_0_x86_64.whl.

File metadata

File hashes

Hashes for ecmwflibs-0.6.1-cp39-cp39-macosx_11_0_x86_64.whl
Algorithm Hash digest
SHA256 35e0cb6fdc3c91445df0849a9228599f6ff6dc26e92e75c5b8e370f32194bcba
MD5 e36ec5cd79592a1fcd8b8db8eee8108a
BLAKE2b-256 0db32c10ecf8faa3ff01c988e27677eeff96d6829b1771eb6072d36a46654d91

See more details on using hashes here.

File details

Details for the file ecmwflibs-0.6.1-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: ecmwflibs-0.6.1-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 44.2 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.18

File hashes

Hashes for ecmwflibs-0.6.1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 d2d0dfea6bad2cc32835e44e6468767e6b2dd9cd05ecf9769cd7ebf94328d8cd
MD5 5c571fe00696ac35f3c6150f4a53e366
BLAKE2b-256 33cca218e83bafd4058b5bef7a0f65e5d9b76075ce97787331230cb613076e6c

See more details on using hashes here.

File details

Details for the file ecmwflibs-0.6.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for ecmwflibs-0.6.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1165cee87ce15266df65e2cef43efd69061380c5dc23349c1b11ed669f11a10d
MD5 de49d1465284651efff251b3cf369bb0
BLAKE2b-256 5c68c08fd088c6ca2131c9b740de78ec46b7558e54835233908b1a1847a97539

See more details on using hashes here.

File details

Details for the file ecmwflibs-0.6.1-cp38-cp38-macosx_11_0_x86_64.whl.

File metadata

File hashes

Hashes for ecmwflibs-0.6.1-cp38-cp38-macosx_11_0_x86_64.whl
Algorithm Hash digest
SHA256 acc184dfd4e9b83dde3c75016500ee99e87cf2580bdbeca217445fc8d72bd106
MD5 7a037c8c4898500a036dc7152aa7b707
BLAKE2b-256 4122cb892b0aaa3028ad219ce6d39ee721b2b0ba8232c160e0475be8af363695

See more details on using hashes here.

File details

Details for the file ecmwflibs-0.6.1-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for ecmwflibs-0.6.1-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 f6d6e3ed8b1f48dbf17088052ce9ab4e395be2e2241890d65844a28fc54fefdd
MD5 30b03d61757208fc9e2d530a58c483a4
BLAKE2b-256 dc0039403c994a5ba9ce6000f259d839c335e32b2a84d396f74c6f5101aafa92

See more details on using hashes here.

File details

Details for the file ecmwflibs-0.6.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for ecmwflibs-0.6.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2a28060284519b43fb08b04e063c2b18fa7bf817a44af57d571bd2b2318e36b3
MD5 e2656ea1814477b462c6fd9808fa58ad
BLAKE2b-256 1c1af1be01741e7a6fa9aa60bc1af53d206b58c7b122a54399a6e31020da49c9

See more details on using hashes here.

File details

Details for the file ecmwflibs-0.6.1-cp37-cp37m-macosx_11_0_x86_64.whl.

File metadata

File hashes

Hashes for ecmwflibs-0.6.1-cp37-cp37m-macosx_11_0_x86_64.whl
Algorithm Hash digest
SHA256 b7bc41641f1c4a6a66ac32776d498e43fae8fd84a3f02eac64a0df28dcf0d0f1
MD5 1ebfa16998d5243742b381ece266f8e9
BLAKE2b-256 ed0e452ae58d5166971ae9e962f0a682f719408c7f89dd58cccd389822ca0e85

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page