Skip to main content

Timeseries visualizer for Electrocorticography (ECoG) signals stored in NWB files.

Project description

ecogVIS

Timeseries visualizer and data processing tools for Electrocorticography (ECoG) signals stored in NWB files, for Python.

PyPI version codecov

A collaboration with the Chang Lab.

Installation

$ pip install ecogVIS

After activating the correct environment, ecogVIS can be started from the terminal:

$ ecogvis

You can also directly pass a file to be opened:

$ ecogvis --source 'filename.nwb'

ecogVIS can be imported and run from python scripts. If the file does not exist (or if you provide an empty string ''), you'll be prompted to choose a file from a dialog.

from ecogvis import main
import os

fpath = os.path.join('path_to', 'file.nwb')
main(fpath)

Features

ecogVIS makes it intuitive and simple to viualize and process ECoG signals. It currently features:

Navigation Seamless visual navigation through long signals from large arrays of electrodes, by mouse-dragging visualization window, control buttons, value fields and keyboard keys.

Annotations Add, delete, save and load annotations for meaningful comments anywhere in the visualization.

Intervals Add, delete, save, load and create custom intervals types to mark specific points in time, with simple click-drag-release mouse movements.

Bad Channels Mark and un-mark bad channels. Choices are saved in the electrodes group of the current NWB file.

Signal preprocessing Preprocessing of raw voltage signals, including user-defined Downsampling, CAR and Notch filtering. The resulting processed signals are stored as an LFP object, in the processing group of the current NWB file.

Events detection Automatic detection of events in audio recordings for Consonant-Vowel tasks. The audio data should be stored in the NWB file in the following way:
  • Speaker audio - As a TimeSeries object, named 'Speaker CV', in the stimulus group.
  • Microphone audio - As a TimeSeries object, named 'Microphone CV', in the acquisition group.
The resulting detected intervals, 'TimeIntervals_mic' and 'TimeIntervals_speaker', are saved as TimeIntervals objects in the intervals group of the current NWB file and can be used later for ERP analysis. A preview allows for testing of the detection parameters before running it for the whole duration of the audio signals.

High Gamma Estimation of high gamma analytic amplitude, with the average of user-defined specific bands. The results are saved as a TimeSeries object, named 'high_gamma', in the processing group of the current or of a new NWB file.

Event-Related Potentials Grid visualization of high gamma ERP calculated in reference to:
  • Stimulus (speaker) or response (microphone) time intervals
  • Onset or offset points
The grid items are coloured to mark specific cortical areas and can be rotated to correspond anatomically to them. Emphasis can be given to specific areas of interest and double-clicking an item allows for fast inspection of the single electrode's ERP in detail.

Periodograms Grid visualization of Periodograms:
  • Raw and preprocessed data
  • FFT and Welch methods
  • Individual devices
The grid items are coloured to mark specific cortical areas and can be rotated to correspond anatomically to them. Emphasis can be given to specific areas of interest and double-clicking an item allows for fast inspection of the single electrode's Periodogram in detail.

Spectral Decomposition Analytic signal amplitude estimation by Hilbert transform of user-defined frequency bands.

WARNING: This function will manipulate an array of size (nSamples, nChannels, nBands), which might be in the order of gigabytes and demand a large memory to operate and is likely to produce a large file.

Plus

  • Select electrodes from specific brain areas
  • Easy moving between block files for the same subject

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

ecogvis-1.2.2.tar.gz (81.4 kB view details)

Uploaded Source

Built Distribution

ecogvis-1.2.2-py3-none-any.whl (93.9 kB view details)

Uploaded Python 3

File details

Details for the file ecogvis-1.2.2.tar.gz.

File metadata

  • Download URL: ecogvis-1.2.2.tar.gz
  • Upload date:
  • Size: 81.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.1.0.post20200710 requests-toolbelt/0.9.1 tqdm/4.47.0 CPython/3.7.7

File hashes

Hashes for ecogvis-1.2.2.tar.gz
Algorithm Hash digest
SHA256 db21dcf7a09a47dd88a2e3518ffa9102e1340b317fac7fcf545b9303f4ea31ed
MD5 756115e7720573d0dfb915feb09253d0
BLAKE2b-256 24f976188368ccc4a11ee9f665630397334b773187fc528bf3eee61cf50598f6

See more details on using hashes here.

Provenance

File details

Details for the file ecogvis-1.2.2-py3-none-any.whl.

File metadata

  • Download URL: ecogvis-1.2.2-py3-none-any.whl
  • Upload date:
  • Size: 93.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.1.0.post20200710 requests-toolbelt/0.9.1 tqdm/4.47.0 CPython/3.7.7

File hashes

Hashes for ecogvis-1.2.2-py3-none-any.whl
Algorithm Hash digest
SHA256 ccab17e4dfd81b2619dce2174bb8d27a5de04e83a173e0e44ad16c32fe38b3d4
MD5 d7bb077f527ff1e6abbafdda08e836ff
BLAKE2b-256 12b43e390e304a77af3a9f682488c8504a4e445258d7099f9057cee9ea279097

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page