Skip to main content

Timeseries visualizer for Electrocorticography (ECoG) signals stored in NWB files.

Project description

ecogVIS

Timeseries visualizer and data processing tools for Electrocorticography (ECoG) signals stored in NWB files, for Python.

codecov

A collaboration with the Chang Lab.

Installation

$ pip install ecogVIS

After activating the correct environment, ecogVIS can be started from the terminal:

$ ecogvis

You can also directly pass a file to be opened:

$ ecogvis --source 'filename.nwb'

ecogVIS can be imported and run from python scripts. If the file does not exist (or if you provide an empty string ''), you'll be prompted to choose a file from a dialog.

from ecogvis import main
import os

fpath = os.path.join('path_to', 'file.nwb')
main(fpath)

Features

ecogVIS makes it intuitive and simple to viualize and process ECoG signals. It currently features:

Navigation Seamless visual navigation through long signals from large arrays of electrodes, by mouse-dragging visualization window, control buttons, value fields and keyboard keys.

Annotations Add, delete, save and load annotations for meaningful comments anywhere in the visualization.

Intervals Add, delete, save, load and create custom intervals types to mark specific points in time, with simple click-drag-release mouse movements.

Bad Channels Mark and un-mark bad channels. Choices are saved in the electrodes group of the current NWB file.

Signal preprocessing Preprocessing of raw voltage signals, including user-defined Downsampling, CAR and Notch filtering. The resulting processed signals are stored as an LFP object, in the processing group of the current NWB file.

Events detection Automatic detection of events in audio recordings for Consonant-Vowel tasks. The audio data should be stored in the NWB file in the following way:
  • Speaker audio - As a TimeSeries object, named 'Speaker CV', in the stimulus group.
  • Microphone audio - As a TimeSeries object, named 'Microphone CV', in the acquisition group.
The resulting detected intervals, 'TimeIntervals_mic' and 'TimeIntervals_speaker', are saved as TimeIntervals objects in the intervals group of the current NWB file and can be used later for ERP analysis. A preview allows for testing of the detection parameters before running it for the whole duration of the audio signals.

High Gamma Estimation of high gamma analytic amplitude, with the average of user-defined specific bands. The results are saved as a TimeSeries object, named 'high_gamma', in the processing group of the current or of a new NWB file.

Event-Related Potentials Grid visualization of high gamma ERP calculated in reference to:
  • Stimulus (speaker) or response (microphone) time intervals
  • Onset or offset points
The grid items are coloured to mark specific cortical areas and can be rotated to correspond anatomically to them. Emphasis can be given to specific areas of interest and double-clicking an item allows for fast inspection of the single electrode's ERP in detail.

Periodograms Grid visualization of Periodograms:
  • Raw and preprocessed data
  • FFT and Welch methods
  • Individual devices
The grid items are coloured to mark specific cortical areas and can be rotated to correspond anatomically to them. Emphasis can be given to specific areas of interest and double-clicking an item allows for fast inspection of the single electrode's Periodogram in detail.

Spectral Decomposition Analytic signal amplitude estimation by Hilbert transform of user-defined frequency bands.

WARNING: This function will manipulate an array of size (nSamples, nChannels, nBands), which might be in the order of gigabytes and demand a large memory to operate and is likely to produce a large file.

Plus

  • Select electrodes from specific brain areas
  • Easy moving between block files for the same subject

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

ecogvis-1.1.0.tar.gz (81.6 kB view details)

Uploaded Source

Built Distribution

ecogvis-1.1.0-py3-none-any.whl (93.7 kB view details)

Uploaded Python 3

File details

Details for the file ecogvis-1.1.0.tar.gz.

File metadata

  • Download URL: ecogvis-1.1.0.tar.gz
  • Upload date:
  • Size: 81.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.1.3.post20200330 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.7.7

File hashes

Hashes for ecogvis-1.1.0.tar.gz
Algorithm Hash digest
SHA256 d5d184bffc74b93197aa9f26bfe2bdcfaf0d18f935e3f1f433a5e15cbad289f5
MD5 a459549f7e1539ffcbe9f464e5e49dcd
BLAKE2b-256 70452d5017737fbb325a161579ed58a8bc38091b5b51fa8762101785626820a0

See more details on using hashes here.

File details

Details for the file ecogvis-1.1.0-py3-none-any.whl.

File metadata

  • Download URL: ecogvis-1.1.0-py3-none-any.whl
  • Upload date:
  • Size: 93.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.1.3.post20200330 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.7.7

File hashes

Hashes for ecogvis-1.1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 aed31132c19bfdda3852dc4535d56773a1139a50ddac87cc5bacfc58169b7883
MD5 806ba7dbea651ae416f8532989507fcd
BLAKE2b-256 033d0ae1efb23e235b7ba328b501f53345191db79028eb2db4926fa2060945a2

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page