Skip to main content

Modular, fast NLP framework, compatible with Pytorch and spaCy, offering tailored support for French clinical notes.

Project description

Tests Documentation PyPI Demo Coverage DOI

EDS-NLP

EDS-NLP is a collaborative NLP framework that aims primarily at extracting information from French clinical notes. At its core, it is a collection of components or pipes, either rule-based functions or deep learning modules. These components are organized into a novel efficient and modular pipeline system, built for hybrid and multitask models. We use spaCy to represent documents and their annotations, and Pytorch as a deep-learning backend for trainable components.

EDS-NLP is versatile and can be used on any textual document. The rule-based components are fully compatible with spaCy's components, and vice versa. This library is a product of collaborative effort, and we encourage further contributions to enhance its capabilities.

Check out our interactive demo !

Features

Quick start

Installation

You can install EDS-NLP via pip. We recommend pinning the library version in your projects, or use a strict package manager like Poetry.

pip install edsnlp==0.13.1

or if you want to use the trainable components (using pytorch)

pip install "edsnlp[ml]==0.13.1"

A first pipeline

Once you've installed the library, let's begin with a very simple example that extracts mentions of COVID19 in a text, and detects whether they are negated.

import edsnlp, edsnlp.pipes as eds

nlp = edsnlp.blank("eds")

terms = dict(
    covid=["covid", "coronavirus"],
)

# Split the documents into sentences, this isneeded for negation detection
nlp.add_pipe(eds.sentences())
# Matcher component
nlp.add_pipe(eds.matcher(terms=terms))
# Negation detection (we also support spacy-like API !)
nlp.add_pipe("eds.negation")

# Process your text in one call !
doc = nlp("Le patient n'est pas atteint de covid")

doc.ents
# Out: (covid,)

doc.ents[0]._.negation
# Out: True

Documentation & Tutorials

Go to the documentation for more information.

Disclaimer

The performances of an extraction pipeline may depend on the population and documents that are considered.

Contributing to EDS-NLP

We welcome contributions ! Fork the project and propose a pull request. Take a look at the dedicated page for detail.

Citation

If you use EDS-NLP, please cite us as below.

@misc{edsnlp,
  author = {Wajsburt, Perceval and Petit-Jean, Thomas and Dura, Basile and Cohen, Ariel and Jean, Charline and Bey, Romain},
  doi    = {10.5281/zenodo.6424993},
  title  = {EDS-NLP: efficient information extraction from French clinical notes},
  url    = {https://aphp.github.io/edsnlp}
}

Acknowledgement

We would like to thank Assistance Publique – Hôpitaux de Paris, AP-HP Foundation and Inria for funding this project.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

edsnlp-0.13.1.tar.gz (1.6 MB view details)

Uploaded Source

Built Distributions

edsnlp-0.13.1-cp312-cp312-win_amd64.whl (1.9 MB view details)

Uploaded CPython 3.12 Windows x86-64

edsnlp-0.13.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.9 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

edsnlp-0.13.1-cp312-cp312-macosx_11_0_arm64.whl (2.0 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

edsnlp-0.13.1-cp312-cp312-macosx_10_13_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.12 macOS 10.13+ x86-64

edsnlp-0.13.1-cp311-cp311-win_amd64.whl (1.9 MB view details)

Uploaded CPython 3.11 Windows x86-64

edsnlp-0.13.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.0 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

edsnlp-0.13.1-cp311-cp311-macosx_11_0_arm64.whl (2.0 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

edsnlp-0.13.1-cp311-cp311-macosx_10_9_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

edsnlp-0.13.1-cp310-cp310-win_amd64.whl (1.9 MB view details)

Uploaded CPython 3.10 Windows x86-64

edsnlp-0.13.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

edsnlp-0.13.1-cp310-cp310-macosx_11_0_arm64.whl (2.0 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

edsnlp-0.13.1-cp310-cp310-macosx_10_9_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

edsnlp-0.13.1-cp39-cp39-win_amd64.whl (1.9 MB view details)

Uploaded CPython 3.9 Windows x86-64

edsnlp-0.13.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

edsnlp-0.13.1-cp39-cp39-macosx_11_0_arm64.whl (2.0 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

edsnlp-0.13.1-cp39-cp39-macosx_10_9_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

edsnlp-0.13.1-cp38-cp38-win_amd64.whl (1.9 MB view details)

Uploaded CPython 3.8 Windows x86-64

edsnlp-0.13.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.9 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

edsnlp-0.13.1-cp38-cp38-macosx_11_0_arm64.whl (2.0 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

edsnlp-0.13.1-cp38-cp38-macosx_10_9_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

edsnlp-0.13.1-cp37-cp37m-win_amd64.whl (1.9 MB view details)

Uploaded CPython 3.7m Windows x86-64

edsnlp-0.13.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

edsnlp-0.13.1-cp37-cp37m-macosx_10_9_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file edsnlp-0.13.1.tar.gz.

File metadata

  • Download URL: edsnlp-0.13.1.tar.gz
  • Upload date:
  • Size: 1.6 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.20

File hashes

Hashes for edsnlp-0.13.1.tar.gz
Algorithm Hash digest
SHA256 c6df1129403b592333538889a058c3cfeda07a6dc42268227e8ed97a6d552547
MD5 604cdd23fa759ebf60fa4f835d7e3a99
BLAKE2b-256 0c4f30c037e31ee7ba558117ddc4eaac38237ed8d09cf96da24cba0405bf79a3

See more details on using hashes here.

Provenance

File details

Details for the file edsnlp-0.13.1-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: edsnlp-0.13.1-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.20

File hashes

Hashes for edsnlp-0.13.1-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 fb6eb6932df2670bbc981e7a215f7061f1bc1f9743701a47a5c4d58a1aea0292
MD5 724a8032bd3935eef53629048853e246
BLAKE2b-256 6a70cb72eedd0167a3c8389e1e367415208e1100c213f377e1e43f73a56f1a1e

See more details on using hashes here.

Provenance

File details

Details for the file edsnlp-0.13.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.13.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4a6ad163ad1dc5554affc1d24d37562c9cd887ef54a9e99beb767310b4a290fc
MD5 b4c543a2bb5e2698614c39590733837d
BLAKE2b-256 518fdaf50998ca2d223ecdbaa3c05c3718eda420df02a463e113dff71e789349

See more details on using hashes here.

Provenance

File details

Details for the file edsnlp-0.13.1-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for edsnlp-0.13.1-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 6922f801e921edacb5be50e7272e065519ae2876942243f475676e0fdf0d940b
MD5 86a860a29ac7ced95a5c7e3669bc6383
BLAKE2b-256 6b1ac7b759b897e5ff6580d01dae01584762773318c38d8852bd392f8f9d05e1

See more details on using hashes here.

Provenance

File details

Details for the file edsnlp-0.13.1-cp312-cp312-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.13.1-cp312-cp312-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 3df7e22c5bb396e25dace3d7532272b3df9504cc07afc34500c68694aee1ad66
MD5 e6c48538b2b2c76fe21a5c6679220444
BLAKE2b-256 f3746ac774ebfffb17ca4cb9c1cbd7cd3eceae40a1b29aeea7b45aa0aac3bba8

See more details on using hashes here.

Provenance

File details

Details for the file edsnlp-0.13.1-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: edsnlp-0.13.1-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.20

File hashes

Hashes for edsnlp-0.13.1-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 97d04b56fb3df402aaf53cff8fa3446f8f9d5ee8deb4ed85798a43da4f2724c0
MD5 846490276bb08e6ed1688fc7f5c69ab5
BLAKE2b-256 03c5bac71688f7174ab908696761ea215f2b5c6a00431611519ce35a6a31218b

See more details on using hashes here.

Provenance

File details

Details for the file edsnlp-0.13.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.13.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3da1f7e8e2a031e092e6b8cf11ce61dc1ba4b01cd41c407897c4c43270d6c2cd
MD5 2d2e6501f3b65c73273d14d2cc1347ed
BLAKE2b-256 a27e71d44cae9bc329f26339c0d3f8a5cf1752cbf660ad4c1a28656e99d0c552

See more details on using hashes here.

Provenance

File details

Details for the file edsnlp-0.13.1-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for edsnlp-0.13.1-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 21dc5dc543b1a644d4d1a019d0bd25ff45d7e6b2b73db10228ec5cfab4e03cc5
MD5 fd8d45079270073813e6148546ca4e26
BLAKE2b-256 4c827879a38a62e923a4b02a4407c6854fc186ce2bb459d5791feb0b983d307b

See more details on using hashes here.

Provenance

File details

Details for the file edsnlp-0.13.1-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.13.1-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 0d074a03bc70c5bbca5670fabe6c5f8242b9632606da9fec4870c996d18992e8
MD5 8f8493feefb79198796af671c0924a15
BLAKE2b-256 a971ceac58a580e9f39d8d423208ecdcb6bfdcf88bbb3405460d584eef967193

See more details on using hashes here.

Provenance

File details

Details for the file edsnlp-0.13.1-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: edsnlp-0.13.1-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.20

File hashes

Hashes for edsnlp-0.13.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 544f836563c20bcb3cab30824572a353a96d0f7d4ba869f71555a693bb8a48aa
MD5 038c2b7f3f55df015351d65ab54b2ee4
BLAKE2b-256 62707b59d3eae3cfbe1a7f2236c5017f5cad1c144808718f4e70fec07754d137

See more details on using hashes here.

Provenance

File details

Details for the file edsnlp-0.13.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.13.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8feba78f82072e8e59642e624ed15ea5b5eebb7a56f6c00d64513e911fdf1150
MD5 557c271656c03f53a6f742fc4e4206b2
BLAKE2b-256 0e801078d59f5671641fc0a0f33fb46500189e50d0c7f8d69d86d64734bf2866

See more details on using hashes here.

Provenance

File details

Details for the file edsnlp-0.13.1-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for edsnlp-0.13.1-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 02fff601c146683740eed023ecce7e45f0e19bbd6e0c2e5f0b115ec1b36bb16c
MD5 fc1ac534a5c36a05eca4e6f9ea2eb203
BLAKE2b-256 700f7116a05a3e209fe5852d0e093b683d1315b207045afc5c030e3865f1a609

See more details on using hashes here.

Provenance

File details

Details for the file edsnlp-0.13.1-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.13.1-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 56de1c6c5cd3fecaa3cc2dd1f7d673a339a8b9a8ad0ce17838992f7751a1b7dc
MD5 f33d0bf3c21db992ad978e8b603c1358
BLAKE2b-256 e38943a802b6df8a44523e1a28b8950995d9d17bcc408c8ac5f0076ecb5f999e

See more details on using hashes here.

Provenance

File details

Details for the file edsnlp-0.13.1-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: edsnlp-0.13.1-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.20

File hashes

Hashes for edsnlp-0.13.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 7d7da439398fcfd64044fb9f6eda82469a91d07e4462b3d7866ec12c3fa2cc04
MD5 44ce0f67670c2b0f792c163cf7a2637b
BLAKE2b-256 881b43604bee96b46ad956c764bf0d374eb3d9fac36085b2fafc65e828bcd8fb

See more details on using hashes here.

Provenance

File details

Details for the file edsnlp-0.13.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.13.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 237c2179db0548c04d0fe96344e7c9938401cbadc02ee6950aae6818c8ee4add
MD5 7a166409bad79149d1852c77431e9566
BLAKE2b-256 cf2fc2cf0769282aa32115c500a272e1c3ddaf153c6219fefe1ad5720131ce45

See more details on using hashes here.

Provenance

File details

Details for the file edsnlp-0.13.1-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for edsnlp-0.13.1-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 a45aae9d68b5ddc2c4fe93664ac8f295364683da0549899a94ef55834f197cd5
MD5 1219fa6cd7532f71605025da4f07998c
BLAKE2b-256 3ddeface3b71198fa56a2a894afbb6e15355c740e3a1becfa9f72a953347319e

See more details on using hashes here.

Provenance

File details

Details for the file edsnlp-0.13.1-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.13.1-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 1093a4d5051dbcb86f314563181be4d09bca977da12e27fc17d9122e35c3a215
MD5 f3a09792e72904f6e6f0c8d864c65eaf
BLAKE2b-256 7ca43ea00c6fa8789cacfa1cb45d13ef1f7fec19545f0f5526daac9e2449edfa

See more details on using hashes here.

Provenance

File details

Details for the file edsnlp-0.13.1-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: edsnlp-0.13.1-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.20

File hashes

Hashes for edsnlp-0.13.1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 71bede9cad25ff3b2c4fb126e91bf337345bb6a1cd09640e0f66e45cc348850f
MD5 39f7927acb94562420a99c7199d21060
BLAKE2b-256 b86f96027a68f266e317f1e4536aad86f26cc3d6c9b70cc3b45bf7775ab12511

See more details on using hashes here.

Provenance

File details

Details for the file edsnlp-0.13.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.13.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 07558c9b87880a572e8170ad4559aabb716c3bf8910c0bc2b59383ca1a6277e0
MD5 154969ed5443e79269e61d39f84afbb3
BLAKE2b-256 28073b9a5fe46bab88966cef3e3cc5a0ffe68a34e968d57edf849bbf177e4ce3

See more details on using hashes here.

Provenance

File details

Details for the file edsnlp-0.13.1-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for edsnlp-0.13.1-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 3d85f18f3d464ce2fb3ba9e5f388c29022d480088b75f7db3bf0522922e80f68
MD5 1acfd9733f9e848e8728d1069338e397
BLAKE2b-256 b97027adc87a7d9407a9f3e257a01a03549fd2f20eedeeed33010f508015cd5d

See more details on using hashes here.

Provenance

File details

Details for the file edsnlp-0.13.1-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.13.1-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 74daa4bd437ff22c04cade41743236e21275eb1275e2e0ed63b277fd60b3632f
MD5 a39bdfe967b88ef1cd911c2270fccdf2
BLAKE2b-256 78d74f2abb1f795932cb842100b4cf3f16a9db6edd74b5b815d3576ca3df3b39

See more details on using hashes here.

Provenance

File details

Details for the file edsnlp-0.13.1-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: edsnlp-0.13.1-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.20

File hashes

Hashes for edsnlp-0.13.1-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 7df5d75a1670a5a9da05a1a64b2a018e035bb66a048d1da23ae6a4ed6fabae0b
MD5 2f6e7c04cd7ebcf3646967ff3d245728
BLAKE2b-256 9605d65b5d8abef8b527355955a34fe15080f5fd1acdc19a726e97e6682f3ae6

See more details on using hashes here.

Provenance

File details

Details for the file edsnlp-0.13.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.13.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4d34e442b00d82588fb2396f9460bb36090347b381ad80ad5c5af8c33d6b5a82
MD5 faf7d8b092adb9215bdbfc5e1e35154a
BLAKE2b-256 d53b4f4823e365efc6979c877e8c96ebe2cc0c3199ddd6403f06039d1bfb7270

See more details on using hashes here.

Provenance

File details

Details for the file edsnlp-0.13.1-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.13.1-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 b20ed08d5a4d79cc3641e8de30788c520e3154ac1c640fbbda18c71fc0ef491b
MD5 59efae750540edf190444dda1f122ffb
BLAKE2b-256 7c006cfaa8ff55ffac098b5697e01c72197e1bf537e56c1eda2aa49f5a386a56

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page