Skip to main content

Modular, fast NLP framework, compatible with Pytorch and spaCy, offering tailored support for French clinical notes.

Project description

Tests Documentation PyPI Demo Codecov DOI

EDS-NLP

EDS-NLP is a collaborative NLP framework that aims primarily at extracting information from French clinical notes. At its core, it is a collection of components or pipes, either rule-based functions or deep learning modules. These components are organized into a novel efficient and modular pipeline system, built for hybrid and multitask models. We use spaCy to represent documents and their annotations, and Pytorch as a deep-learning backend for trainable components.

EDS-NLP is versatile and can be used on any textual document. The rule-based components are fully compatible with spaCy's components, and vice versa. This library is a product of collaborative effort, and we encourage further contributions to enhance its capabilities.

Check out our interactive demo !

Features

Quick start

Installation

You can install EDS-NLP via pip. We recommend pinning the library version in your projects, or use a strict package manager like Poetry.

pip install edsnlp

or if you want to use the trainable components (using pytorch)

pip install "edsnlp[ml]"

A first pipeline

Once you've installed the library, let's begin with a very simple example that extracts mentions of COVID19 in a text, and detects whether they are negated.

import edsnlp

nlp = edsnlp.blank("eds")

terms = dict(
    covid=["covid", "coronavirus"],
)

# Split the documents into sentences, this isneeded for negation detection
nlp.add_pipe("eds.sentences")
# Matcher component
nlp.add_pipe("eds.matcher", config=dict(terms=terms))
# Negation detection
nlp.add_pipe("eds.negation")

# Process your text in one call !
doc = nlp("Le patient n'est pas atteint de covid")

doc.ents
# Out: (covid,)

doc.ents[0]._.negation
# Out: True

Documentation & Tutorials

Go to the documentation for more information.

Disclaimer

The performances of an extraction pipeline may depend on the population and documents that are considered.

Contributing to EDS-NLP

We welcome contributions ! Fork the project and propose a pull request. Take a look at the dedicated page for detail.

Citation

If you use EDS-NLP, please cite us as below.

@misc{edsnlp,
  author = {Wajsburt, Perceval and Petit-Jean, Thomas and Dura, Basile and Cohen, Ariel and Jean, Charline and Bey, Romain},
  doi    = {10.5281/zenodo.6424993},
  title  = {EDS-NLP: efficient information extraction from French clinical notes},
  url    = {https://aphp.github.io/edsnlp}
}

Acknowledgement

We would like to thank Assistance Publique – Hôpitaux de Paris, AP-HP Foundation and Inria for funding this project.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

edsnlp-0.10.0.tar.gz (1.5 MB view details)

Uploaded Source

Built Distributions

edsnlp-0.10.0-cp311-cp311-win_amd64.whl (1.8 MB view details)

Uploaded CPython 3.11 Windows x86-64

edsnlp-0.10.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.7 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

edsnlp-0.10.0-cp311-cp311-macosx_11_0_arm64.whl (1.8 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

edsnlp-0.10.0-cp311-cp311-macosx_10_9_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

edsnlp-0.10.0-cp310-cp310-win_amd64.whl (1.8 MB view details)

Uploaded CPython 3.10 Windows x86-64

edsnlp-0.10.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.7 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

edsnlp-0.10.0-cp310-cp310-macosx_11_0_arm64.whl (1.8 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

edsnlp-0.10.0-cp310-cp310-macosx_10_9_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

edsnlp-0.10.0-cp39-cp39-win_amd64.whl (1.8 MB view details)

Uploaded CPython 3.9 Windows x86-64

edsnlp-0.10.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.7 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

edsnlp-0.10.0-cp39-cp39-macosx_11_0_arm64.whl (1.8 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

edsnlp-0.10.0-cp39-cp39-macosx_10_9_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

edsnlp-0.10.0-cp38-cp38-win_amd64.whl (1.8 MB view details)

Uploaded CPython 3.8 Windows x86-64

edsnlp-0.10.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.7 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

edsnlp-0.10.0-cp38-cp38-macosx_11_0_arm64.whl (1.8 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

edsnlp-0.10.0-cp38-cp38-macosx_10_9_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

edsnlp-0.10.0-cp37-cp37m-win_amd64.whl (1.8 MB view details)

Uploaded CPython 3.7m Windows x86-64

edsnlp-0.10.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

edsnlp-0.10.0-cp37-cp37m-macosx_10_9_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file edsnlp-0.10.0.tar.gz.

File metadata

  • Download URL: edsnlp-0.10.0.tar.gz
  • Upload date:
  • Size: 1.5 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.18

File hashes

Hashes for edsnlp-0.10.0.tar.gz
Algorithm Hash digest
SHA256 68ec50535bf2ca8020ac2a969a9f7160cee47f5174b581e6bd00b0ab59d9349b
MD5 3f5a5a930f1fc55a078b74e6e0c832df
BLAKE2b-256 e80bc1c37f2310400bf097380f860d2eb93b9249622255e4cafa1e57c9a465c7

See more details on using hashes here.

Provenance

File details

Details for the file edsnlp-0.10.0-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: edsnlp-0.10.0-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 1.8 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.18

File hashes

Hashes for edsnlp-0.10.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 af02162c4d5e376a5e738fa5d6bf824962ad0e26c9b904ad6a07b390e7f9d433
MD5 5087648f286a9dbacfa8c10a5e7d609d
BLAKE2b-256 ea99d389b207679d6b71770fc0e7e1ef1f108f581c3fefc9eba54a8f47d7e3f3

See more details on using hashes here.

Provenance

File details

Details for the file edsnlp-0.10.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.10.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e1f4d3a6bf7af5483e4853bd0c742e3a6f1b585c496e498cff360f39de5ed11d
MD5 5c972b0a95a18837f1d8bafd1720000b
BLAKE2b-256 2d46d8e596b6347af3e99b47a4c82cd2d94cc10e7fe795061682f21e4a06cc96

See more details on using hashes here.

Provenance

File details

Details for the file edsnlp-0.10.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for edsnlp-0.10.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 a1f915a24200ae93a84ba5a7f1508244ba4067a2dfa25bc93e2ba179f97b36ab
MD5 245482fda36c1b0002626b4c1d69e70b
BLAKE2b-256 77d6c158d82fdf8a2078e6d88c03f2226d841d40ae7c2b07e5aac1286b859e4f

See more details on using hashes here.

Provenance

File details

Details for the file edsnlp-0.10.0-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.10.0-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 00758542963b4d4d526938e6c46f643f73f1cd925481a758cee55b27e4034aee
MD5 d6c0844e3cec8ea2a5db646071ba3931
BLAKE2b-256 792ac3e472bc8931dfe688e84e54d677a09b5ca130aea179fa188ce3aa409fb2

See more details on using hashes here.

Provenance

File details

Details for the file edsnlp-0.10.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: edsnlp-0.10.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 1.8 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.18

File hashes

Hashes for edsnlp-0.10.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 5328c4682871fc61972f42c5c01f1ba634eeff0664a9d1453619a3abf8d9b3ca
MD5 91313953e90035367a7f695e2ed4e32c
BLAKE2b-256 85f128d2e115d21ff3e8535c07f9792b68ff30a69c96b537780f0100fac7129c

See more details on using hashes here.

Provenance

File details

Details for the file edsnlp-0.10.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.10.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c2bb7e692fae53f7696260c4dae11231e7864e0d9baa8c6400cb1d876eafdc8d
MD5 74caaa46c42515137c324a52f4a07c57
BLAKE2b-256 5d08269de5467a3bad6b6fe7d3aac43fc74e4fccedc9dab62eaaca69b3fe67ad

See more details on using hashes here.

Provenance

File details

Details for the file edsnlp-0.10.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for edsnlp-0.10.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 bb2aee7d071fc3e80df5d4e85aebf09a5b439b8101f3e4ccbfca01ecd056b82c
MD5 217795e393560ded79357e5f042925e9
BLAKE2b-256 02648cc9d0bb002b3de2aa4dd279e116b206676e3e88873db58a9fdb1cea07a3

See more details on using hashes here.

Provenance

File details

Details for the file edsnlp-0.10.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.10.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ebc66240f612a8ecf795358f35bd27e53845a892ae3bfba9afb6a04156526ce0
MD5 f429bc7cea927de28607bb169f132e17
BLAKE2b-256 2abe91b8c900cc2ed454190b18dc4fd5c6653b0d1d0c3ab7a46c2d3e0d075696

See more details on using hashes here.

Provenance

File details

Details for the file edsnlp-0.10.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: edsnlp-0.10.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 1.8 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.18

File hashes

Hashes for edsnlp-0.10.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 bf0e5aa92a0e4cfff499f5453096868a377c50366f2d04df2798ae80b27d9a04
MD5 58ab10f1698f636d6cb1bcaa2e210c05
BLAKE2b-256 28c2e729ad758ca271fe87e6ecd6245c8ea97229e3ebc2b4127627e385978e2b

See more details on using hashes here.

Provenance

File details

Details for the file edsnlp-0.10.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.10.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3d2c09941c44c2bc08070aa0129625064811a97af0fa420b7b4abeb1c3c4ddb1
MD5 da317f1607992708ffc42d010977840c
BLAKE2b-256 297683ddf786e6e6e90b65e5e9cbef51360b11fafb800284fcbc497bd3b5343e

See more details on using hashes here.

Provenance

File details

Details for the file edsnlp-0.10.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for edsnlp-0.10.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 4ad79a0c5795ddba85517e4dcc56cac205a8d78d4a2a0681e892453480d89b28
MD5 5a163cc4e82cbfbbc7be74bc475754e0
BLAKE2b-256 fbf8db36d03b71f0ec5de1abb44ffa4f2d7371478aaa4247d59e39281871314e

See more details on using hashes here.

Provenance

File details

Details for the file edsnlp-0.10.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.10.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 b16fb05b8ab352918c0f8016e1ac5c27db950f3c4412e2fd9a8d7978b5505501
MD5 2b1cc3deded201a5980899dc0b67635b
BLAKE2b-256 7f1f5f96aad73af7b24011208b5aa3f6ba07e3ba50fc426e36ef7d492e61eccf

See more details on using hashes here.

Provenance

File details

Details for the file edsnlp-0.10.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: edsnlp-0.10.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 1.8 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.18

File hashes

Hashes for edsnlp-0.10.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 37d7632b203a7583aad8b0b53b48201fc95658723244f3f405ea2b81aebbe962
MD5 50d6414687a5920b7aec5da67e7d18e6
BLAKE2b-256 8c10c266084c903c59e953d1a646fd5b67e68e4b8a3304337d5ffd3d4f43aa95

See more details on using hashes here.

Provenance

File details

Details for the file edsnlp-0.10.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.10.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 06aaa5b60f8503da99754771a7b241dc59fa43cb22420c7e4bdb73f765125b92
MD5 08dc2921805d00c665759f73c3ed9a5e
BLAKE2b-256 8f41b1b63558b910c5f62595749643f3016442868a6766f5ab5c58715a09443e

See more details on using hashes here.

Provenance

File details

Details for the file edsnlp-0.10.0-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for edsnlp-0.10.0-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 47b3431ed464265c5fbf9202f3446e13e179fb956dc86578546fef94adfa1c2e
MD5 6c790fc72c553e0f80b05ec74c785c14
BLAKE2b-256 e7dfcb1dfbc3956c2de51f9cade4bcaa3cf29b54353266849427f0012027a058

See more details on using hashes here.

Provenance

File details

Details for the file edsnlp-0.10.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.10.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 12288210c4ce2c494252017cb7aee9c21cddec1972e43acb25b517877df000ae
MD5 6e3ef15f44b6671b9293c92ae64d9153
BLAKE2b-256 4ff50615c38a69de4a3baeceedb114bcb48fc2a983baab5f7037f1a0c778a2ac

See more details on using hashes here.

Provenance

File details

Details for the file edsnlp-0.10.0-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: edsnlp-0.10.0-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 1.8 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.18

File hashes

Hashes for edsnlp-0.10.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 7b9633970ceab02a3800e31dad10f4d0949dbad9de3568ac2810da6f7a43a54c
MD5 eee9cb514620c495324944b33d1a03ac
BLAKE2b-256 f7aa03125ef34b80f17e89ba0354873377105e40002a2984cb562122c85c0fb5

See more details on using hashes here.

Provenance

File details

Details for the file edsnlp-0.10.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.10.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d95dc5035bf303c2578b98e2c14bb359fd7b8a5a4db927874da8dd1a38adf069
MD5 61350504425ebbe358194f51f95670dd
BLAKE2b-256 c84e4f88c6db661c920480c510a95c11291dab09ec20ceff435c6bfb4ae51315

See more details on using hashes here.

Provenance

File details

Details for the file edsnlp-0.10.0-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.10.0-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 61ad91f31468ecfe37b8a5be7eb398ca4336301f6a53d8baeeb71f11e56cb1f1
MD5 1d3c68165b317d9b6bea1f094930d2c4
BLAKE2b-256 28fadb67c8778b8725c214a83e3ed0b906e4981c2258325b87ab1949e512611b

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page