Skip to main content

A set of spaCy components to extract information from clinical notes written in French

Project description

Tests Documentation PyPI Demo Codecov DOI

EDS-NLP

EDS-NLP is a collaborative NLP framework that aims at extracting information from French clinical notes. At its core, it is a collection of components or pipes, either rule-based functions or deep learning modules. These components are organized into a novel efficient and modular pipeline system, built for hybrid and multitask models. We use spaCy to represent documents and their annotations, and Pytorch as a deep-learning backend for trainable components.

EDS-NLP is versatile and can be used on any textual document. The rule-based components are fully compatible with spaCy's pipelines, and vice versa. This library is a product of collaborative effort, and we encourage further contributions to enhance its capabilities.

Check out our interactive demo !

Quick start

Installation

You can install EDS-NLP via pip. We recommend pinning the library version in your projects, or use a strict package manager like Poetry.

pip install edsnlp==0.10.0beta1

or if you want to use the trainable components (using pytorch)

pip install "edsnlp[ml]==0.10.0beta1"

A first pipeline

Once you've installed the library, let's begin with a very simple example that extracts mentions of COVID19 in a text, and detects whether they are negated.

import edsnlp

nlp = edsnlp.blank("eds")

terms = dict(
    covid=["covid", "coronavirus"],
)

# Split the documents into sentences, this isneeded for negation detection
nlp.add_pipe("eds.sentences")
# Matcher component
nlp.add_pipe("eds.matcher", config=dict(terms=terms))
# Negation detection
nlp.add_pipe("eds.negation")

# Process your text in one call !
doc = nlp("Le patient n'est pas atteint de covid")

doc.ents
# Out: (covid,)

doc.ents[0]._.negation
# Out: True

Documentation

Go to the documentation for more information.

Disclaimer

The performances of an extraction pipeline may depend on the population and documents that are considered.

Contributing to EDS-NLP

We welcome contributions ! Fork the project and propose a pull request. Take a look at the dedicated page for detail.

Citation

If you use EDS-NLP, please cite us as below.

@misc{edsnlp,
  author = {Wajsburt, Perceval and Petit-Jean, Thomas and Dura, Basile and Cohen, Ariel and Jean, Charline and Bey, Romain},
  doi    = {10.5281/zenodo.6424993},
  title  = {EDS-NLP: efficient information extraction from French clinical notes},
  url    = {https://aphp.github.io/edsnlp}
}

Acknowledgement

We would like to thank Assistance Publique – Hôpitaux de Paris, AP-HP Foundation and Inria for funding this project.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

edsnlp-0.10.0b1.tar.gz (1.5 MB view details)

Uploaded Source

Built Distributions

edsnlp-0.10.0b1-cp310-cp310-win_amd64.whl (1.8 MB view details)

Uploaded CPython 3.10 Windows x86-64

edsnlp-0.10.0b1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.7 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

edsnlp-0.10.0b1-cp310-cp310-macosx_10_9_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

edsnlp-0.10.0b1-cp39-cp39-win_amd64.whl (1.8 MB view details)

Uploaded CPython 3.9 Windows x86-64

edsnlp-0.10.0b1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.7 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

edsnlp-0.10.0b1-cp39-cp39-macosx_10_9_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

edsnlp-0.10.0b1-cp38-cp38-win_amd64.whl (1.8 MB view details)

Uploaded CPython 3.8 Windows x86-64

edsnlp-0.10.0b1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.7 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

edsnlp-0.10.0b1-cp38-cp38-macosx_10_9_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

edsnlp-0.10.0b1-cp37-cp37m-win_amd64.whl (1.8 MB view details)

Uploaded CPython 3.7m Windows x86-64

edsnlp-0.10.0b1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

edsnlp-0.10.0b1-cp37-cp37m-macosx_10_9_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file edsnlp-0.10.0b1.tar.gz.

File metadata

  • Download URL: edsnlp-0.10.0b1.tar.gz
  • Upload date:
  • Size: 1.5 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.18

File hashes

Hashes for edsnlp-0.10.0b1.tar.gz
Algorithm Hash digest
SHA256 14a595af2611fca58ebb8f39d2bbc82594cf84f3e53999159549d66b1e52d850
MD5 223304c39903709c76a72f32f5f1d2c4
BLAKE2b-256 a0bee06526c72fbfdc31f0d088e6b367ace921c77e15bdc6a2dce117f1feed3e

See more details on using hashes here.

File details

Details for the file edsnlp-0.10.0b1-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for edsnlp-0.10.0b1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 a6ebd37f0a327f167e9636cbd69343fd1c1daf8314631597d85b0eb1437b2e8f
MD5 33ff8910713f423f87635b276af5cc49
BLAKE2b-256 1897a6a0c0df4415d1dafd417eee2d95c5cb81e9f58d9de617e70099a0050d04

See more details on using hashes here.

File details

Details for the file edsnlp-0.10.0b1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.10.0b1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 491a127a6dd34b6870e7a258df82c52dbfae8b7a7018aeb73d9c21f76cdacf13
MD5 be764c9a41c46aefb149ac163656a41a
BLAKE2b-256 7033ce31a9569403f4b5ca35295a3eb0b55df83b5f2f852f3688998aea112962

See more details on using hashes here.

File details

Details for the file edsnlp-0.10.0b1-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.10.0b1-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 7fbbbfaf3f1e997e334ab64fd923d03f779536308ed137e15298fe2e044b2c81
MD5 55ffa5fc83b10df9b11961b4bcdf382b
BLAKE2b-256 7ced71bd7583c4710886516a3c2219dfd8e438e5ead720f612eaa7d8ba49f02d

See more details on using hashes here.

File details

Details for the file edsnlp-0.10.0b1-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: edsnlp-0.10.0b1-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 1.8 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.18

File hashes

Hashes for edsnlp-0.10.0b1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 ac03900d8cc8b715c9b7d69b5cbfdc7d1c45f213ed1d1b57c836fdc14bdca939
MD5 766b2e587a2d6b755aa47efdd07106d9
BLAKE2b-256 9c5c58010f45fdca327b1f62a244d452e87ca5a7ea0b261725b31178f194d737

See more details on using hashes here.

File details

Details for the file edsnlp-0.10.0b1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.10.0b1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1d9926b00c1c22fb36671e0cf0a58f8c313b2a2c89bfc67637dfd674abb698e4
MD5 07537095399e195cef6fbfd5dacb85d1
BLAKE2b-256 ea69faa22c37d7ea31c10cf7579fe212a2f445ba590689741c252739d1ab7d9b

See more details on using hashes here.

File details

Details for the file edsnlp-0.10.0b1-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.10.0b1-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 a9ae7090c88bf832652559f96f264cbadd3e16f9edc94f4884a6eda311ac659b
MD5 2bce59b72f719b2f8354bd7c27bff017
BLAKE2b-256 25a226dd0b4f396abe12901aef561a585e8138455ae2a5b1a6dd8c3ee647cfc2

See more details on using hashes here.

File details

Details for the file edsnlp-0.10.0b1-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: edsnlp-0.10.0b1-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 1.8 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.18

File hashes

Hashes for edsnlp-0.10.0b1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 a39523ad54b2c11a641198122b24156511de254894bf227f0e5154ab3b5169cf
MD5 b82dc7adf2193996648fc679b52097ed
BLAKE2b-256 9dcbce69f233e2d4894a062433b39955d5b8cad7cfd99e36ab916aee4945497f

See more details on using hashes here.

File details

Details for the file edsnlp-0.10.0b1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.10.0b1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 aa6d4e519a3e99b2651c52be61ca3c1405d8bcd8f9325b07522cc6c9b641b615
MD5 132cc60be11303451414b0b35bc08571
BLAKE2b-256 52e56afa8d2b3bef5cc12f946df7836d5e56731a41b935231da3123dd6a765cc

See more details on using hashes here.

File details

Details for the file edsnlp-0.10.0b1-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.10.0b1-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ce80b4f702d6029167ef4eb1edd97a452a40e6f5815810d3e961429e5237d3fa
MD5 6b844febdf9b14a9324d430454253211
BLAKE2b-256 b701f583335f3a68494c5170095837762dc14fcbf288d6e886bd6f08eaff792b

See more details on using hashes here.

File details

Details for the file edsnlp-0.10.0b1-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for edsnlp-0.10.0b1-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 3d80543df14d588619972a91fb11800b8c80477df4312d24e2ec5cddcfc99181
MD5 ce2a2593258425fc70c8ba6cb8ec0c86
BLAKE2b-256 dcd5f535613793363043b72d420a171fccbe83e0639b40c4e0682b39c9427638

See more details on using hashes here.

File details

Details for the file edsnlp-0.10.0b1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.10.0b1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e9c9956285584453398406f1f99aa6a59920761f8b8c10deebaa89236a458912
MD5 8c0288fd499039b429c6efab0fb7a22d
BLAKE2b-256 cfca8c2cea5f3ce3e30c24dba6864e33b904ef362b1ba4ca2bed536c2dfd2c83

See more details on using hashes here.

File details

Details for the file edsnlp-0.10.0b1-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.10.0b1-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 cecec67938832648c70ae8866f90bc19a30dfa299bb6241fadc619e02a8aa05b
MD5 a7dd246f4fdb7eba78423fec09c4a8f0
BLAKE2b-256 ec6087c1d35c1b44efe6bcbfba105eaee6be49b63fc1df916ddbefd63429d6a2

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page