Skip to main content

Modular, fast NLP framework, compatible with Pytorch and spaCy, offering tailored support for French clinical notes.

Project description

Tests Documentation PyPI Demo Codecov DOI

EDS-NLP

EDS-NLP is a collaborative NLP framework that aims primarily at extracting information from French clinical notes. At its core, it is a collection of components or pipes, either rule-based functions or deep learning modules. These components are organized into a novel efficient and modular pipeline system, built for hybrid and multitask models. We use spaCy to represent documents and their annotations, and Pytorch as a deep-learning backend for trainable components.

EDS-NLP is versatile and can be used on any textual document. The rule-based components are fully compatible with spaCy's components, and vice versa. This library is a product of collaborative effort, and we encourage further contributions to enhance its capabilities.

Check out our interactive demo !

Features

Quick start

Installation

You can install EDS-NLP via pip. We recommend pinning the library version in your projects, or use a strict package manager like Poetry.

pip install edsnlp

or if you want to use the trainable components (using pytorch)

pip install "edsnlp[ml]"

A first pipeline

Once you've installed the library, let's begin with a very simple example that extracts mentions of COVID19 in a text, and detects whether they are negated.

import edsnlp

nlp = edsnlp.blank("eds")

terms = dict(
    covid=["covid", "coronavirus"],
)

# Split the documents into sentences, this isneeded for negation detection
nlp.add_pipe("eds.sentences")
# Matcher component
nlp.add_pipe("eds.matcher", config=dict(terms=terms))
# Negation detection
nlp.add_pipe("eds.negation")

# Process your text in one call !
doc = nlp("Le patient n'est pas atteint de covid")

doc.ents
# Out: (covid,)

doc.ents[0]._.negation
# Out: True

Documentation & Tutorials

Go to the documentation for more information.

Disclaimer

The performances of an extraction pipeline may depend on the population and documents that are considered.

Contributing to EDS-NLP

We welcome contributions ! Fork the project and propose a pull request. Take a look at the dedicated page for detail.

Citation

If you use EDS-NLP, please cite us as below.

@misc{edsnlp,
  author = {Wajsburt, Perceval and Petit-Jean, Thomas and Dura, Basile and Cohen, Ariel and Jean, Charline and Bey, Romain},
  doi    = {10.5281/zenodo.6424993},
  title  = {EDS-NLP: efficient information extraction from French clinical notes},
  url    = {https://aphp.github.io/edsnlp}
}

Acknowledgement

We would like to thank Assistance Publique – Hôpitaux de Paris, AP-HP Foundation and Inria for funding this project.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

edsnlp-0.10.1.tar.gz (1.5 MB view details)

Uploaded Source

Built Distributions

edsnlp-0.10.1-cp311-cp311-win_amd64.whl (1.8 MB view details)

Uploaded CPython 3.11 Windows x86-64

edsnlp-0.10.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.7 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

edsnlp-0.10.1-cp311-cp311-macosx_11_0_arm64.whl (1.8 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

edsnlp-0.10.1-cp311-cp311-macosx_10_9_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

edsnlp-0.10.1-cp310-cp310-win_amd64.whl (1.8 MB view details)

Uploaded CPython 3.10 Windows x86-64

edsnlp-0.10.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.7 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

edsnlp-0.10.1-cp310-cp310-macosx_11_0_arm64.whl (1.8 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

edsnlp-0.10.1-cp310-cp310-macosx_10_9_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

edsnlp-0.10.1-cp39-cp39-win_amd64.whl (1.8 MB view details)

Uploaded CPython 3.9 Windows x86-64

edsnlp-0.10.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.7 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

edsnlp-0.10.1-cp39-cp39-macosx_11_0_arm64.whl (1.8 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

edsnlp-0.10.1-cp39-cp39-macosx_10_9_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

edsnlp-0.10.1-cp38-cp38-win_amd64.whl (1.8 MB view details)

Uploaded CPython 3.8 Windows x86-64

edsnlp-0.10.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.7 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

edsnlp-0.10.1-cp38-cp38-macosx_11_0_arm64.whl (1.8 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

edsnlp-0.10.1-cp38-cp38-macosx_10_9_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

edsnlp-0.10.1-cp37-cp37m-win_amd64.whl (1.8 MB view details)

Uploaded CPython 3.7m Windows x86-64

edsnlp-0.10.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

edsnlp-0.10.1-cp37-cp37m-macosx_10_9_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file edsnlp-0.10.1.tar.gz.

File metadata

  • Download URL: edsnlp-0.10.1.tar.gz
  • Upload date:
  • Size: 1.5 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.18

File hashes

Hashes for edsnlp-0.10.1.tar.gz
Algorithm Hash digest
SHA256 f50d76398e750b753759b56ca03f459b926f4ddde29f8d564ad6e5b72566cad6
MD5 179c1bccb0ea8c93684ded9d4645f9b3
BLAKE2b-256 d85432f936a70c3ddf32cff299602684337c61e79b1f0558ba4b28bfc4a526d1

See more details on using hashes here.

File details

Details for the file edsnlp-0.10.1-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: edsnlp-0.10.1-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 1.8 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.18

File hashes

Hashes for edsnlp-0.10.1-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 49ed9bcac52a4c6e608511e9c19f48781a80e847cd4f85c7565ed385e8c24100
MD5 25d35acc47c18da50d07d1d127a178ad
BLAKE2b-256 b3092359f2f933caa0fbd7e04289a1c0e8b46eb390a96e0f1e8b38d1703edd9c

See more details on using hashes here.

File details

Details for the file edsnlp-0.10.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.10.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4e3ff5cc0d41d392a6fb326db5b317c3a8bec06f8b02abe45bdd55958058b02e
MD5 e24a3ece448494045453ce69eb164b07
BLAKE2b-256 fa72ab6d40aad2e4ad042262640b6ff8f6b062a75e017a8f244a66ec715f95ef

See more details on using hashes here.

File details

Details for the file edsnlp-0.10.1-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for edsnlp-0.10.1-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 de0553c6a9be80400be085105dc6f47a990958a793f8d89b614b4ce8431be7b7
MD5 9e15748ab627d36225cd69242016a229
BLAKE2b-256 af6434bfe7e7953d7637041d8ca86929c5dd96364a91698458c7b57b07046f40

See more details on using hashes here.

File details

Details for the file edsnlp-0.10.1-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.10.1-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 f3bf83b33f89146ee88bd48ac14175faee3c0643e489ccbf96f48ae78e434d7a
MD5 17c6fc6d32c35270f01e3c78a9066378
BLAKE2b-256 4f8a92dff65ccd2ee618f8b56b0f7d47b0fc781b45e739a9070224af8f9dde2d

See more details on using hashes here.

File details

Details for the file edsnlp-0.10.1-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: edsnlp-0.10.1-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 1.8 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.18

File hashes

Hashes for edsnlp-0.10.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 7c28352af9aebbf656bcee508d56385952a020b437cf1ea101963f361be04e44
MD5 88aaf76f4c38050f917f5247a1f18430
BLAKE2b-256 21a9edf70b0bbb2e3b20ec4479c6589c64f32f2516a51fa64a86a06d908a785a

See more details on using hashes here.

File details

Details for the file edsnlp-0.10.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.10.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 160645dc2cb8fdf485fb337634f46f4485b8aaaba791a39d7a73ea7d43857584
MD5 1d5a8397c5d2d11249e4b8dcb453267e
BLAKE2b-256 5878743b0977a002ddfaf67d9f10cd40a3f34f4326a6f9f7e4d06d7f8e05ec55

See more details on using hashes here.

File details

Details for the file edsnlp-0.10.1-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for edsnlp-0.10.1-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 68bb9710021956fbc00d7dd5712df93dc953117f83259c6b178daf86b917dd34
MD5 9c7c252f55b0de000bd3ad387a543c2b
BLAKE2b-256 4b221f4e5d50ab1b6f4a0273c54c267d8225c62b21b2b8644e9a5ba553741338

See more details on using hashes here.

File details

Details for the file edsnlp-0.10.1-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.10.1-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 e9b6cfaa19ba88c9b4e20a6f2ad740c3ec610641289cc4de2be3801c28a043ba
MD5 38de5007f4eedab00bf9be4c0235c508
BLAKE2b-256 89373ff7e047ac350bfb32855b482c7fe42e7dee918a8026a4b38b0a9fd89f9a

See more details on using hashes here.

File details

Details for the file edsnlp-0.10.1-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: edsnlp-0.10.1-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 1.8 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.18

File hashes

Hashes for edsnlp-0.10.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 8497eb833ea16c9ef7f0979eb7ad97c72464a29d4ca657dbc6c3c99b5568f6f6
MD5 fd2c233ae245e96bc23a97d3c487e3ba
BLAKE2b-256 27bff8aac416abdeebe7ae857e94bd9ad683ae829fa02d7a4bbf605b27094e45

See more details on using hashes here.

File details

Details for the file edsnlp-0.10.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.10.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1edb2b1ff0f53256a0d2eebf3a7276502883c346f78ba214b6d15def4a9f0ca3
MD5 c5921833ece4dba869d6578e8262a8f0
BLAKE2b-256 005c2bc482c4d8b35518da52b053a1548413428d8190521b50fdf9a6dab26701

See more details on using hashes here.

File details

Details for the file edsnlp-0.10.1-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for edsnlp-0.10.1-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 e11f67fde6e3d0acb45207bbf9b01a1249dae8dc2404e6868a23c5d1b51eb404
MD5 5e4208bf28412a8c22dcf1dda7a74ff8
BLAKE2b-256 fbff63eb4d42de841df068cbfc81dd4b78e98f39efbfcfbba0000797bdcedd17

See more details on using hashes here.

File details

Details for the file edsnlp-0.10.1-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.10.1-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c86a47a8a87627dadcf5954b362e68166f663f0797e389ea1433e13bac2e008a
MD5 3e43ff217848e19ed209d32574ae24f0
BLAKE2b-256 08649d5318bc7d709cc0a58853b86025d9f4cb20fbb19efc64186e0a15413162

See more details on using hashes here.

File details

Details for the file edsnlp-0.10.1-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: edsnlp-0.10.1-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 1.8 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.18

File hashes

Hashes for edsnlp-0.10.1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 daf4f74ebf900bd03e8aa97e9af1748c3da4640663f853de1392211b146f8e76
MD5 7b52ab8e1ab3421eb519ec08c882d0ac
BLAKE2b-256 ab7aab3fe54845e092849c914ed5be0af49fca82c7a603d81edb525320eb86c4

See more details on using hashes here.

File details

Details for the file edsnlp-0.10.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.10.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 455b60321203efb23e4cf9d027e871c4ed14a39e27ee3595f8b9be97c6296b25
MD5 09e6fbb55e7a882e2ff8b122e14b7a35
BLAKE2b-256 7717621c603ffdce3d66b84039dfb3f5fdb193364f8bf81720b8423cd30240a2

See more details on using hashes here.

File details

Details for the file edsnlp-0.10.1-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for edsnlp-0.10.1-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 f46cc74306f24f48bdab1b88525f5ce72a41070590cdce826fb0af5399f2a689
MD5 d93b2e982162bd1204fce962088281e3
BLAKE2b-256 6986793abfa6b3bfd95292a069926ba497289989a005786b06f51aeaeffe0b6d

See more details on using hashes here.

File details

Details for the file edsnlp-0.10.1-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.10.1-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c0d4a67971da1f172d8b9099925d32f168a516b64e54d95e826d9f3149147369
MD5 8c37dcf89bdcdd81ba339032135de8d2
BLAKE2b-256 d844b5d1c2b849357e67eb35f9b3ef6061e8392754f68ab4e5a98a45d735c6bd

See more details on using hashes here.

File details

Details for the file edsnlp-0.10.1-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: edsnlp-0.10.1-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 1.8 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.18

File hashes

Hashes for edsnlp-0.10.1-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 178aa03f17aef2d8f9be92fe3c9a7d647a1aea0dd61c23aae45cba54bc34c96c
MD5 1e297fbd877cf4950012c45f10d82579
BLAKE2b-256 7dbf9b76972caef0bea353ef79476f2a43df36899ade1d9bdf9a3d4b37bc7693

See more details on using hashes here.

File details

Details for the file edsnlp-0.10.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.10.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 97bb2c15f6ab4cf98fc1f6884a6773bcc8acec94485eef1b20e5ff6614cd95b9
MD5 b9fa6a05a26cf578d523dfdaeac33d26
BLAKE2b-256 ea15e621a40da436542956eb7358ebb6d30ce5267196c5724f3a60bcec305bf9

See more details on using hashes here.

File details

Details for the file edsnlp-0.10.1-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.10.1-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 1e08f0f807725587847b925d84ca40ef0b3c2c2c61534ef0eda0f912ceccc2a0
MD5 eff9156a5b8f1f4c54a40aa9a54689ed
BLAKE2b-256 345ff8291f6333eadfd118cc9e8946a6e2386d0a2fc6a303a2cc9fc0c6887386

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page