Skip to main content

Modular, fast NLP framework, compatible with Pytorch and spaCy, offering tailored support for French clinical notes.

Project description

Tests Documentation PyPI Demo Codecov DOI

EDS-NLP

EDS-NLP is a collaborative NLP framework that aims primarily at extracting information from French clinical notes. At its core, it is a collection of components or pipes, either rule-based functions or deep learning modules. These components are organized into a novel efficient and modular pipeline system, built for hybrid and multitask models. We use spaCy to represent documents and their annotations, and Pytorch as a deep-learning backend for trainable components.

EDS-NLP is versatile and can be used on any textual document. The rule-based components are fully compatible with spaCy's components, and vice versa. This library is a product of collaborative effort, and we encourage further contributions to enhance its capabilities.

Check out our interactive demo !

Features

Quick start

Installation

You can install EDS-NLP via pip. We recommend pinning the library version in your projects, or use a strict package manager like Poetry.

pip install edsnlp

or if you want to use the trainable components (using pytorch)

pip install "edsnlp[ml]"

A first pipeline

Once you've installed the library, let's begin with a very simple example that extracts mentions of COVID19 in a text, and detects whether they are negated.

import edsnlp

nlp = edsnlp.blank("eds")

terms = dict(
    covid=["covid", "coronavirus"],
)

# Split the documents into sentences, this isneeded for negation detection
nlp.add_pipe("eds.sentences")
# Matcher component
nlp.add_pipe("eds.matcher", config=dict(terms=terms))
# Negation detection
nlp.add_pipe("eds.negation")

# Process your text in one call !
doc = nlp("Le patient n'est pas atteint de covid")

doc.ents
# Out: (covid,)

doc.ents[0]._.negation
# Out: True

Documentation & Tutorials

Go to the documentation for more information.

Disclaimer

The performances of an extraction pipeline may depend on the population and documents that are considered.

Contributing to EDS-NLP

We welcome contributions ! Fork the project and propose a pull request. Take a look at the dedicated page for detail.

Citation

If you use EDS-NLP, please cite us as below.

@misc{edsnlp,
  author = {Wajsburt, Perceval and Petit-Jean, Thomas and Dura, Basile and Cohen, Ariel and Jean, Charline and Bey, Romain},
  doi    = {10.5281/zenodo.6424993},
  title  = {EDS-NLP: efficient information extraction from French clinical notes},
  url    = {https://aphp.github.io/edsnlp}
}

Acknowledgement

We would like to thank Assistance Publique – Hôpitaux de Paris, AP-HP Foundation and Inria for funding this project.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

edsnlp-0.10.2.tar.gz (1.5 MB view details)

Uploaded Source

Built Distributions

edsnlp-0.10.2-cp311-cp311-win_amd64.whl (1.8 MB view details)

Uploaded CPython 3.11 Windows x86-64

edsnlp-0.10.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.7 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

edsnlp-0.10.2-cp311-cp311-macosx_11_0_arm64.whl (1.8 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

edsnlp-0.10.2-cp311-cp311-macosx_10_9_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

edsnlp-0.10.2-cp310-cp310-win_amd64.whl (1.8 MB view details)

Uploaded CPython 3.10 Windows x86-64

edsnlp-0.10.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.7 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

edsnlp-0.10.2-cp310-cp310-macosx_11_0_arm64.whl (1.8 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

edsnlp-0.10.2-cp310-cp310-macosx_10_9_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

edsnlp-0.10.2-cp39-cp39-win_amd64.whl (1.8 MB view details)

Uploaded CPython 3.9 Windows x86-64

edsnlp-0.10.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.7 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

edsnlp-0.10.2-cp39-cp39-macosx_11_0_arm64.whl (1.8 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

edsnlp-0.10.2-cp39-cp39-macosx_10_9_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

edsnlp-0.10.2-cp38-cp38-win_amd64.whl (1.8 MB view details)

Uploaded CPython 3.8 Windows x86-64

edsnlp-0.10.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.7 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

edsnlp-0.10.2-cp38-cp38-macosx_11_0_arm64.whl (1.8 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

edsnlp-0.10.2-cp38-cp38-macosx_10_9_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

edsnlp-0.10.2-cp37-cp37m-win_amd64.whl (1.8 MB view details)

Uploaded CPython 3.7m Windows x86-64

edsnlp-0.10.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

edsnlp-0.10.2-cp37-cp37m-macosx_10_9_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file edsnlp-0.10.2.tar.gz.

File metadata

  • Download URL: edsnlp-0.10.2.tar.gz
  • Upload date:
  • Size: 1.5 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.18

File hashes

Hashes for edsnlp-0.10.2.tar.gz
Algorithm Hash digest
SHA256 6ddb4fbf2d65cf98910467843a9dabc998ab7d9fd036d50f25a2da8f8e63cf3b
MD5 33b2313abda427b9ea73dd1ef560e0a4
BLAKE2b-256 a85e290812485222a44a80470c5176aec0a0dcd208e31f0180c3228047f4eb09

See more details on using hashes here.

Provenance

File details

Details for the file edsnlp-0.10.2-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: edsnlp-0.10.2-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 1.8 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.18

File hashes

Hashes for edsnlp-0.10.2-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 f5f057aa2783b67c69b79fbe06ee04a4dde983e07d6ffb9dde3c6179feba4e96
MD5 9d8d43fd63d3087e4fdfb31582b49233
BLAKE2b-256 3936e1f6773d1aab162506d81109fb8ad8585f50dd44b5757773cf31c531e243

See more details on using hashes here.

Provenance

File details

Details for the file edsnlp-0.10.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.10.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ad6119fbfdc02a8845b2cd574955541299c638d43c355fec6ae0fc6a6ba597ab
MD5 eba5b4ad59f5038fe6b70451e9d49490
BLAKE2b-256 a21861f5591756fa6400f52513599e4203c74e8458dfcce1d54b03768c99b2b3

See more details on using hashes here.

Provenance

File details

Details for the file edsnlp-0.10.2-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for edsnlp-0.10.2-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 4538c7f3d9eaf0865efe0ac57c6e2896bd5ce58a86ef07f29f65622883b5aa39
MD5 9d27eea0a98181d5b75e54200f8375ed
BLAKE2b-256 8da3948ccbe72e6d4cdbce9ee6bbc09bc3255d6c3d963d9e1f7e49e974bc23ab

See more details on using hashes here.

Provenance

File details

Details for the file edsnlp-0.10.2-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.10.2-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 9c1030b96968dcbe1c05ad94413177decf0063a904c21e19615f83ca3baaea04
MD5 6143dbdb27b359ef7e9970bb2685add0
BLAKE2b-256 3386ff4c357bcb963a445d4057b6edd0972475ee0adbe27c17ef61251e714428

See more details on using hashes here.

Provenance

File details

Details for the file edsnlp-0.10.2-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: edsnlp-0.10.2-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 1.8 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.18

File hashes

Hashes for edsnlp-0.10.2-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 3a286fba6d184a800423fb25e2da918e7efd9dca6198da7c242abaa9c8d0f692
MD5 86204bbc5bc79d0ad5b62dbc7d203077
BLAKE2b-256 5392d93020da47b2c2e107f061e9e4c4fe7d35bae06d5c73f7616d8f6f33cf25

See more details on using hashes here.

Provenance

File details

Details for the file edsnlp-0.10.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.10.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4998952aebe962fdbae77ae0c862fb88e924837110eae3452e5c9efefb73bbc1
MD5 c9cfef4ec3582686c0a5598b28615e02
BLAKE2b-256 8c8ff0d6286af5e4e98cdf9ee95cded9402779566742c12f7d5b245904b94741

See more details on using hashes here.

Provenance

File details

Details for the file edsnlp-0.10.2-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for edsnlp-0.10.2-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 2bf6d68452be66fe3005f3c64bafbaa4600aa25719f566673a41b0a0c741e548
MD5 e9260857591c4c46dc930e85988da5c8
BLAKE2b-256 449453c628404b0206cc7ef94c1c9dbaa1ee80c01bb3c15be1b7bbc39c3528d8

See more details on using hashes here.

Provenance

File details

Details for the file edsnlp-0.10.2-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.10.2-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ffb3dc28e61c24b3e0ab43229fee9475cfa1f72d0a8ebed1a358b20636c5256f
MD5 65a0f463821f8d26df71036a030fabe0
BLAKE2b-256 89e8a8076c88260167178eca99b36404643a8677942365e1a7648f619febd4d1

See more details on using hashes here.

Provenance

File details

Details for the file edsnlp-0.10.2-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: edsnlp-0.10.2-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 1.8 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.18

File hashes

Hashes for edsnlp-0.10.2-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 c2849c0ffcc2757e7971b7a4b6eeb71a092caaf32165dd66f56cfb47b8185fc7
MD5 aab4667bb01f3ccf174ee43ba625a13b
BLAKE2b-256 51551844a7b83f28332525d649c9d42c5bc877401ab130b7f3159ce1eee43845

See more details on using hashes here.

Provenance

File details

Details for the file edsnlp-0.10.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.10.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2da4575c019807d18543563a231f5fd4d0bb25ac9b351f7bde50c10f818b2814
MD5 7e5af70501e1329a3f17cba0e410728d
BLAKE2b-256 3abedb4f468ee9730880b4d6e1e72c1d391858046d6f25549c9f95dd258dd4c1

See more details on using hashes here.

Provenance

File details

Details for the file edsnlp-0.10.2-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for edsnlp-0.10.2-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 ee977e3bf0eb93a31f6164d3c8be59fa78b490aab6567726d95c5cf0d1e0af1a
MD5 70c96a1752fbfea6fe6752363e6ef9a3
BLAKE2b-256 da96f249c544aa984bbe6f7f49092249aa7e140b064d22f269de5431dcdccf27

See more details on using hashes here.

Provenance

File details

Details for the file edsnlp-0.10.2-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.10.2-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 69115170620e17fe11bdb2cf21877700ab5edbba598ac0cef3b7427cbde5aa91
MD5 17eede0cddc9e62339308fedaf81fd20
BLAKE2b-256 b81d517673adb1d59baf2fe676832c0e61260a6ce3f63cb919ea3f6f10fe89ef

See more details on using hashes here.

Provenance

File details

Details for the file edsnlp-0.10.2-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: edsnlp-0.10.2-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 1.8 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.18

File hashes

Hashes for edsnlp-0.10.2-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 2a962e5a9d7e7b628552f7740869e9284417ec79b1ed0a2cbb6a3e9649700717
MD5 cbcbd9b2673a567574770d225860fac5
BLAKE2b-256 4c0630f96c399371135d9e8cfe11227e4946ebfe6eff7d2f5b24732ffc8dedb4

See more details on using hashes here.

Provenance

File details

Details for the file edsnlp-0.10.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.10.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 922bfc72556947d91f3599d68b008aab8d12758ca7e875ea6ac12b1be4cd207c
MD5 e727de7ff094b5f105f2d25c800b70db
BLAKE2b-256 70e96d7d5a694af8b0ff7cf2bb92a72b5136c1d45086514f246b6e4ba7a72f1f

See more details on using hashes here.

Provenance

File details

Details for the file edsnlp-0.10.2-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for edsnlp-0.10.2-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 ea4685003a8503c4084bba3614921f92be3002592e3182d8ff3f79cf1d1d5e0e
MD5 1f2df29e58d7c18ab1e2f1763ab6fa94
BLAKE2b-256 e8e0e177bd2a069f03868097a2d4185c062e39b011c8dad35ae5e2f6ab064574

See more details on using hashes here.

Provenance

File details

Details for the file edsnlp-0.10.2-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.10.2-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ab9368c21aeccd5f7c34b86c265ab50c0481cdf013565b656fc53fe04dd2d826
MD5 72911cf876a8615091cb17fc564da4ea
BLAKE2b-256 3b9f6f70c752eca6c911eeb1f1bd10d29fcd4228b99564d570c4a8315bda03dd

See more details on using hashes here.

Provenance

File details

Details for the file edsnlp-0.10.2-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: edsnlp-0.10.2-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 1.8 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.18

File hashes

Hashes for edsnlp-0.10.2-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 6601729f4b65a4984340acc32918ac31f9e8ca451e57d177167ccb054023818b
MD5 27c98b351312b417992d28d39c6e2b1d
BLAKE2b-256 c989915021bba6f42235b114ab85b0d72e6f7755e166cf21f1c358a224e6fcff

See more details on using hashes here.

Provenance

File details

Details for the file edsnlp-0.10.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.10.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 727e517250eaac30aa2ad628ba6928f6612f5198c5841e9f62799f851fbe187a
MD5 bbdeb37ddb918ece4aafba5da447c0a1
BLAKE2b-256 b026e97f8573518c967073b44d9ba1fa25fbaa8ae94f5b81684523e925a133c1

See more details on using hashes here.

Provenance

File details

Details for the file edsnlp-0.10.2-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.10.2-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 0f342e41a6799eb381f068a5e334ab765ebb9ea811922884e5dd84422a143660
MD5 9c7095f18d425d1e1e9bad7d903671e5
BLAKE2b-256 1409cad3f2e11bd2bd751ef5f6a9fb317e8453b9ff3cdb13447687c8d2086ec8

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page