Skip to main content

Modular, fast NLP framework, compatible with Pytorch and spaCy, offering tailored support for French clinical notes.

Project description

Tests Documentation PyPI Demo Codecov DOI

EDS-NLP

EDS-NLP is a collaborative NLP framework that aims primarily at extracting information from French clinical notes. At its core, it is a collection of components or pipes, either rule-based functions or deep learning modules. These components are organized into a novel efficient and modular pipeline system, built for hybrid and multitask models. We use spaCy to represent documents and their annotations, and Pytorch as a deep-learning backend for trainable components.

EDS-NLP is versatile and can be used on any textual document. The rule-based components are fully compatible with spaCy's components, and vice versa. This library is a product of collaborative effort, and we encourage further contributions to enhance its capabilities.

Check out our interactive demo !

Features

Quick start

Installation

You can install EDS-NLP via pip. We recommend pinning the library version in your projects, or use a strict package manager like Poetry.

pip install edsnlp

or if you want to use the trainable components (using pytorch)

pip install "edsnlp[ml]"

A first pipeline

Once you've installed the library, let's begin with a very simple example that extracts mentions of COVID19 in a text, and detects whether they are negated.

import edsnlp

nlp = edsnlp.blank("eds")

terms = dict(
    covid=["covid", "coronavirus"],
)

# Split the documents into sentences, this isneeded for negation detection
nlp.add_pipe("eds.sentences")
# Matcher component
nlp.add_pipe("eds.matcher", config=dict(terms=terms))
# Negation detection
nlp.add_pipe("eds.negation")

# Process your text in one call !
doc = nlp("Le patient n'est pas atteint de covid")

doc.ents
# Out: (covid,)

doc.ents[0]._.negation
# Out: True

Documentation & Tutorials

Go to the documentation for more information.

Disclaimer

The performances of an extraction pipeline may depend on the population and documents that are considered.

Contributing to EDS-NLP

We welcome contributions ! Fork the project and propose a pull request. Take a look at the dedicated page for detail.

Citation

If you use EDS-NLP, please cite us as below.

@misc{edsnlp,
  author = {Wajsburt, Perceval and Petit-Jean, Thomas and Dura, Basile and Cohen, Ariel and Jean, Charline and Bey, Romain},
  doi    = {10.5281/zenodo.6424993},
  title  = {EDS-NLP: efficient information extraction from French clinical notes},
  url    = {https://aphp.github.io/edsnlp}
}

Acknowledgement

We would like to thank Assistance Publique – Hôpitaux de Paris, AP-HP Foundation and Inria for funding this project.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

edsnlp-0.10.3.tar.gz (1.5 MB view details)

Uploaded Source

Built Distributions

edsnlp-0.10.3-cp311-cp311-win_amd64.whl (1.8 MB view details)

Uploaded CPython 3.11 Windows x86-64

edsnlp-0.10.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.7 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

edsnlp-0.10.3-cp311-cp311-macosx_11_0_arm64.whl (1.8 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

edsnlp-0.10.3-cp311-cp311-macosx_10_9_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

edsnlp-0.10.3-cp310-cp310-win_amd64.whl (1.8 MB view details)

Uploaded CPython 3.10 Windows x86-64

edsnlp-0.10.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.7 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

edsnlp-0.10.3-cp310-cp310-macosx_11_0_arm64.whl (1.8 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

edsnlp-0.10.3-cp310-cp310-macosx_10_9_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

edsnlp-0.10.3-cp39-cp39-win_amd64.whl (1.8 MB view details)

Uploaded CPython 3.9 Windows x86-64

edsnlp-0.10.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.7 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

edsnlp-0.10.3-cp39-cp39-macosx_11_0_arm64.whl (1.8 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

edsnlp-0.10.3-cp39-cp39-macosx_10_9_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

edsnlp-0.10.3-cp38-cp38-win_amd64.whl (1.8 MB view details)

Uploaded CPython 3.8 Windows x86-64

edsnlp-0.10.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.7 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

edsnlp-0.10.3-cp38-cp38-macosx_11_0_arm64.whl (1.8 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

edsnlp-0.10.3-cp38-cp38-macosx_10_9_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

edsnlp-0.10.3-cp37-cp37m-win_amd64.whl (1.8 MB view details)

Uploaded CPython 3.7m Windows x86-64

edsnlp-0.10.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

edsnlp-0.10.3-cp37-cp37m-macosx_10_9_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file edsnlp-0.10.3.tar.gz.

File metadata

  • Download URL: edsnlp-0.10.3.tar.gz
  • Upload date:
  • Size: 1.5 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.18

File hashes

Hashes for edsnlp-0.10.3.tar.gz
Algorithm Hash digest
SHA256 a42061d20a137cb2958731f585fb118011731f9c7c16f3d21f10018bb330b6fa
MD5 7ac8dd5fba906c624dbc788fc3d6b868
BLAKE2b-256 b23a1397ad8983f72e8e3e9ac2ce3bf62c58ad7190475988a413e7148ca2e67d

See more details on using hashes here.

Provenance

File details

Details for the file edsnlp-0.10.3-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: edsnlp-0.10.3-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 1.8 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.18

File hashes

Hashes for edsnlp-0.10.3-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 d5e1db0c7dbf21c2400a49a041a8bf7ef8fc48748e1ff961ea2f1856c029320e
MD5 4564f6d8ae9c43c8141cf9bce6ee47bc
BLAKE2b-256 f42e941619729588f3d2a83a0b49a27098ed901270f7362739ae31de47cdba6d

See more details on using hashes here.

Provenance

File details

Details for the file edsnlp-0.10.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.10.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8c122f7c006554845a24a5c2a63ce82fe542671e173f5267d9516742fc308853
MD5 0899d855ed4a61ca06cf947a8fcef878
BLAKE2b-256 2eb5922184ac4ce68af07b3b4fa2e2a0a0861f52489f9b49629c5a0fa5e1cef1

See more details on using hashes here.

Provenance

File details

Details for the file edsnlp-0.10.3-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for edsnlp-0.10.3-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 f0171216ba7171f9449826ebd37bf70d32e7ddc29dfab28d6f4485da576d192f
MD5 86f8e3f4e9b37b0dfa4ed045901fa889
BLAKE2b-256 12d70659c6e4629bd636fe776a25f9328247b4b9cfa85e4dea7317284bdadd5a

See more details on using hashes here.

Provenance

File details

Details for the file edsnlp-0.10.3-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.10.3-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 bab688c6095f0763a6545dd2feafbc137b85cfef5fed3c5925d1a6b806a96706
MD5 ef3011bfc52362fc4f699783c435df11
BLAKE2b-256 d2030a3b20098f520a1ca0feea0b755625aef577164c101455fe45938154644e

See more details on using hashes here.

Provenance

File details

Details for the file edsnlp-0.10.3-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: edsnlp-0.10.3-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 1.8 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.18

File hashes

Hashes for edsnlp-0.10.3-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 4404f8fad5e2b55834ceb35a8badaef023804161d4549d340f77b4221cff9232
MD5 31a81dadb87990896a97feaae05c4115
BLAKE2b-256 aa57e73fb0aa8c822fca17c4d9cf5e3ef0ba13d918768da209b56cf5bec18589

See more details on using hashes here.

Provenance

File details

Details for the file edsnlp-0.10.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.10.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 54a6b6c37ca3ebccb00df83bbee1fff674f072a5a4908468316d3ba6ef15a2c3
MD5 376034b28120e65d9e0b9528ec5f2a33
BLAKE2b-256 1b9044ef5f4d8c6bfca921565ac88bdc0f1c1958036e4f675d3869d1592b83d5

See more details on using hashes here.

Provenance

File details

Details for the file edsnlp-0.10.3-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for edsnlp-0.10.3-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 0698e3703b2b6260f97ea69e692b1bf8b937a87fdfb2b3acdbac93aa1265aed6
MD5 c82ee11e8787eab67fc341c5df9facfc
BLAKE2b-256 275e8c99f65d4cda6df2ce464535a149652a7423f4846981163bc8f49b01018f

See more details on using hashes here.

Provenance

File details

Details for the file edsnlp-0.10.3-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.10.3-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c277bb757e65a0f5a64163e0c36dc2e957efaca2c9017f796fab6d005398f0cf
MD5 f6cc6bc23ecfdbabbe84a6b0478faa52
BLAKE2b-256 f83068fbe501ae1d2638321526e97bf1a3fde156a3cded9d8e2198dfff978ba8

See more details on using hashes here.

Provenance

File details

Details for the file edsnlp-0.10.3-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: edsnlp-0.10.3-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 1.8 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.18

File hashes

Hashes for edsnlp-0.10.3-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 ce8832461f533f78a4f528c73d318389e4601a3eeea223602daea1e05058af0e
MD5 ba197c2b96fa898a44bfd47e3bac1085
BLAKE2b-256 9ef7c7e37d4896829c6a99e37f46789e2236614cbbe4ad0acbb4428257afd4ae

See more details on using hashes here.

Provenance

File details

Details for the file edsnlp-0.10.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.10.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 915125add90aede20ad7962ce4963b4b2c7f2c1311e7761362206499a00dfa5a
MD5 e5cea4c6029833eaab07a9d290c147a9
BLAKE2b-256 91820ea97e9db5e5434654af5998847af9d0bb5b1a4472c709e6883159b73465

See more details on using hashes here.

Provenance

File details

Details for the file edsnlp-0.10.3-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for edsnlp-0.10.3-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 1636934a497748832a0ec0bb996dea64e07dcb888c30db57deb9c27ca9b27426
MD5 c00c0f1a250bab3c955695992e6c5093
BLAKE2b-256 41d981f7ebbce4e67b8844fe1b63e8a747d83ef7b85d8640aeb60615a2f6ff6d

See more details on using hashes here.

Provenance

File details

Details for the file edsnlp-0.10.3-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.10.3-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 398f961553dc317bfc46e5db48919efbbe11c97631b7852a0a99d03a280ea42a
MD5 faab6dddf679370d62cecdd3ab73b203
BLAKE2b-256 9a74dce8a7d4522bb1644989577400e380e7f4d8c20aa71ce89b0fb7dbe5cb29

See more details on using hashes here.

Provenance

File details

Details for the file edsnlp-0.10.3-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: edsnlp-0.10.3-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 1.8 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.18

File hashes

Hashes for edsnlp-0.10.3-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 b92415746b241d8df0b43834ceff3d3d85d90c364dc3d82a1d6ed15f53a61cfd
MD5 79e7d2b6f331caed41e9547aa4f9112c
BLAKE2b-256 9c3d319372bde48b50bbdf55fdd9715b3a205ca32cf09ff2a259072013e49261

See more details on using hashes here.

Provenance

File details

Details for the file edsnlp-0.10.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.10.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 036be77f127e2581cd572f01b09632b25d78c69d4a827b325e502b4ff3757531
MD5 9ccc0ba22937013eb7182a05d516905d
BLAKE2b-256 3b3b4923f9cef89b452c822bd04ea37e569a19c30dbca22668e9a6ee4d0e726d

See more details on using hashes here.

Provenance

File details

Details for the file edsnlp-0.10.3-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for edsnlp-0.10.3-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 f8a095433f629561a5b2fdd0033a3bd7763bd0a043501a5f9cc7f50894798d97
MD5 b883f4f5eeb9874eca3e02584bd35396
BLAKE2b-256 40551848bad777e5229ed879473dcaaea31d701c3cd737048f42862598b3b6b2

See more details on using hashes here.

Provenance

File details

Details for the file edsnlp-0.10.3-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.10.3-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 447e5c93d1f537c1aade485c08410838b1fdbfd45a166656156e6d1e394e7d5c
MD5 1a150e00537f09e7608419e7b6abc3a4
BLAKE2b-256 d633f08d4607257ec083a50771e71e0a10563fc86f8084a15ea6901585beb224

See more details on using hashes here.

Provenance

File details

Details for the file edsnlp-0.10.3-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: edsnlp-0.10.3-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 1.8 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.18

File hashes

Hashes for edsnlp-0.10.3-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 380cc97f868080b0c795adbf141e605c42a3cfe992381bd500b642125c758cdc
MD5 d54dbc0c82af0254506c05a76c1a9fd5
BLAKE2b-256 da811990cd9106cf58555ed9a1e1c80cd1cbf9be7bb5173e7feb8b524df8a846

See more details on using hashes here.

Provenance

File details

Details for the file edsnlp-0.10.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.10.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f7a422942731dbfab46f4f3c68a61a4b0d407e2bb8d9dd427ca40fa455fbda43
MD5 d3daa8000fb69409c6940ca6c2c7a784
BLAKE2b-256 c959ad316768faadc7ffe0ac0da05af3f03d964943a1b66bbde2491e959214b6

See more details on using hashes here.

Provenance

File details

Details for the file edsnlp-0.10.3-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.10.3-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 a93894331ad744fc08605752358b0bc4ba87a2cc506d83ecd1dba3477d680cd5
MD5 1c5fb5da4128802e6605b54fdd557803
BLAKE2b-256 8b73cbb036315c078b2c4d1f2c569eee1873fb44672b4bd97d001070a5578b2c

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page