Skip to main content

Modular, fast NLP framework, compatible with Pytorch and spaCy, offering tailored support for French clinical notes.

Project description

Tests Documentation PyPI Demo Codecov DOI

EDS-NLP

EDS-NLP is a collaborative NLP framework that aims primarily at extracting information from French clinical notes. At its core, it is a collection of components or pipes, either rule-based functions or deep learning modules. These components are organized into a novel efficient and modular pipeline system, built for hybrid and multitask models. We use spaCy to represent documents and their annotations, and Pytorch as a deep-learning backend for trainable components.

EDS-NLP is versatile and can be used on any textual document. The rule-based components are fully compatible with spaCy's components, and vice versa. This library is a product of collaborative effort, and we encourage further contributions to enhance its capabilities.

Check out our interactive demo !

Features

Quick start

Installation

You can install EDS-NLP via pip. We recommend pinning the library version in your projects, or use a strict package manager like Poetry.

pip install edsnlp

or if you want to use the trainable components (using pytorch)

pip install "edsnlp[ml]"

A first pipeline

Once you've installed the library, let's begin with a very simple example that extracts mentions of COVID19 in a text, and detects whether they are negated.

import edsnlp

nlp = edsnlp.blank("eds")

terms = dict(
    covid=["covid", "coronavirus"],
)

# Split the documents into sentences, this isneeded for negation detection
nlp.add_pipe("eds.sentences")
# Matcher component
nlp.add_pipe("eds.matcher", config=dict(terms=terms))
# Negation detection
nlp.add_pipe("eds.negation")

# Process your text in one call !
doc = nlp("Le patient n'est pas atteint de covid")

doc.ents
# Out: (covid,)

doc.ents[0]._.negation
# Out: True

Documentation & Tutorials

Go to the documentation for more information.

Disclaimer

The performances of an extraction pipeline may depend on the population and documents that are considered.

Contributing to EDS-NLP

We welcome contributions ! Fork the project and propose a pull request. Take a look at the dedicated page for detail.

Citation

If you use EDS-NLP, please cite us as below.

@misc{edsnlp,
  author = {Wajsburt, Perceval and Petit-Jean, Thomas and Dura, Basile and Cohen, Ariel and Jean, Charline and Bey, Romain},
  doi    = {10.5281/zenodo.6424993},
  title  = {EDS-NLP: efficient information extraction from French clinical notes},
  url    = {https://aphp.github.io/edsnlp}
}

Acknowledgement

We would like to thank Assistance Publique – Hôpitaux de Paris, AP-HP Foundation and Inria for funding this project.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

edsnlp-0.10.4.tar.gz (1.5 MB view details)

Uploaded Source

Built Distributions

edsnlp-0.10.4-cp311-cp311-win_amd64.whl (1.8 MB view details)

Uploaded CPython 3.11 Windows x86-64

edsnlp-0.10.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.7 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

edsnlp-0.10.4-cp311-cp311-macosx_11_0_arm64.whl (1.8 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

edsnlp-0.10.4-cp311-cp311-macosx_10_9_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

edsnlp-0.10.4-cp310-cp310-win_amd64.whl (1.8 MB view details)

Uploaded CPython 3.10 Windows x86-64

edsnlp-0.10.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.7 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

edsnlp-0.10.4-cp310-cp310-macosx_11_0_arm64.whl (1.8 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

edsnlp-0.10.4-cp310-cp310-macosx_10_9_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

edsnlp-0.10.4-cp39-cp39-win_amd64.whl (1.8 MB view details)

Uploaded CPython 3.9 Windows x86-64

edsnlp-0.10.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.7 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

edsnlp-0.10.4-cp39-cp39-macosx_11_0_arm64.whl (1.8 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

edsnlp-0.10.4-cp39-cp39-macosx_10_9_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

edsnlp-0.10.4-cp38-cp38-win_amd64.whl (1.8 MB view details)

Uploaded CPython 3.8 Windows x86-64

edsnlp-0.10.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.7 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

edsnlp-0.10.4-cp38-cp38-macosx_11_0_arm64.whl (1.8 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

edsnlp-0.10.4-cp38-cp38-macosx_10_9_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

edsnlp-0.10.4-cp37-cp37m-win_amd64.whl (1.8 MB view details)

Uploaded CPython 3.7m Windows x86-64

edsnlp-0.10.4-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

edsnlp-0.10.4-cp37-cp37m-macosx_10_9_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file edsnlp-0.10.4.tar.gz.

File metadata

  • Download URL: edsnlp-0.10.4.tar.gz
  • Upload date:
  • Size: 1.5 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.18

File hashes

Hashes for edsnlp-0.10.4.tar.gz
Algorithm Hash digest
SHA256 81666c79701366cfa4fad1cb8e1db8b280b7a9de016ca44d4a4c81e449e28a31
MD5 2c0df476a82721037e6972f5c9c067e7
BLAKE2b-256 d0f9f49eb550149a6adf821ed60c2941e9a551ce411146c54df23e2021c26259

See more details on using hashes here.

File details

Details for the file edsnlp-0.10.4-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: edsnlp-0.10.4-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 1.8 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.18

File hashes

Hashes for edsnlp-0.10.4-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 c2d402a89d02d5f9fe09e5a3da3a8a48accf5e8b7db60f516c7b0592822f2a87
MD5 c266356b8bd28042b15ab0e9fe9f5a82
BLAKE2b-256 782a5f18c2b4fc3176ede2a20d056e75645ee202d65a4efd5c89c8a09c2065a1

See more details on using hashes here.

File details

Details for the file edsnlp-0.10.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.10.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a5b86f7afbec32e2728218540b9ae5d729554e4ceae3d43ab02e06d48d5330da
MD5 47cf44513cd3bbde8a198f95d74a409d
BLAKE2b-256 f562268cc30bf6aa12e58a152ed3f22c6059ea50d8a944b66ccbca6737c65bd1

See more details on using hashes here.

File details

Details for the file edsnlp-0.10.4-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for edsnlp-0.10.4-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 0d653dbb6887057870c431b5fe7d4c029c4675aee63aaba3af30c9f4653b1b36
MD5 0cf2c1b2836c946cf2d71adb8af2772d
BLAKE2b-256 07e176c3128e26808d91c51d9c775c0fd7501ca4eac04492472d0dae1799dd41

See more details on using hashes here.

File details

Details for the file edsnlp-0.10.4-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.10.4-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 9b5ea7e5f4b7517323b63287c39f62d0836d0440d920ef460cb509697cafc837
MD5 4ba759c33f0cfca65a134a7453517d59
BLAKE2b-256 2b99327384c0c4e9473ff64a24a51136cbc11754468967635531b02bb18ec909

See more details on using hashes here.

File details

Details for the file edsnlp-0.10.4-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: edsnlp-0.10.4-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 1.8 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.18

File hashes

Hashes for edsnlp-0.10.4-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 bf5dab063d939eed4801d8fa3b518216694ac1213f9162b2eaf34df633c2b94f
MD5 a644b2b7f615ba1303ea1453eef9d403
BLAKE2b-256 ed15a1a25f69189885f49ffe95f488350dffb2d40b7648e8931bb0b2bed417d4

See more details on using hashes here.

File details

Details for the file edsnlp-0.10.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.10.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5331eef24c8a8028b2a784dd36e4978ccf2739995323aad6f05afacfb4bdada6
MD5 6a75115f0c69781e547bb9dbd33af51d
BLAKE2b-256 81708602ea91cf22ab4c779366f713781f11eb534a52e474c25625835f235d47

See more details on using hashes here.

File details

Details for the file edsnlp-0.10.4-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for edsnlp-0.10.4-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 74eca2f86f2e8f41a3e6e8b1eb254d92fecb373f276fd1d9699e68b4b84f6db9
MD5 2fb1ec33a5656c892b2902b0036ab5e7
BLAKE2b-256 bd8b9a304118409ecd458a6ae960a2739e5540d596e651e0056facc8be7032ee

See more details on using hashes here.

File details

Details for the file edsnlp-0.10.4-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.10.4-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 8f79da208e2fe07f521d40d77e9dfa2741d10eba489c71f0e5f832e39ad656e9
MD5 977ec150f11c0b8a1071329f60dee0f5
BLAKE2b-256 50c34430160092acf8b3a0ead08f3a2a6c694f77c6a28109ccce37e21ef9ba67

See more details on using hashes here.

File details

Details for the file edsnlp-0.10.4-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: edsnlp-0.10.4-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 1.8 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.18

File hashes

Hashes for edsnlp-0.10.4-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 07fae9356e9900e328ddfa39a0118cefaf9edad4ae884487e94d267ef3a0cb55
MD5 90c8d46540da7a0dec2a41357216ec52
BLAKE2b-256 a64f5ee99f6de11ce825ad1964d295507830819b8fefdc03d3816cab67b4bf48

See more details on using hashes here.

File details

Details for the file edsnlp-0.10.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.10.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e59fe2e232541852a3ca88ff693055bd597e432dfed67af05917323e4ce73402
MD5 b2afc75be5a1c7b8d6ed107eb972a3db
BLAKE2b-256 6c889ab7c4fcd215405c6474a48f03f5220dc3bebef913ee1d113f06576b5d52

See more details on using hashes here.

File details

Details for the file edsnlp-0.10.4-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for edsnlp-0.10.4-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 0aa052181c29bda2bb236f8c6e8c699f9647d7ca0072aa8c5318b2e3cad082e7
MD5 37c341f64629ed349171a80976d6b910
BLAKE2b-256 074563b20e16eb9f08c5579e6a49b5fb0727678d7579d54787994dd707a29209

See more details on using hashes here.

File details

Details for the file edsnlp-0.10.4-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.10.4-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 dfea59c939909a2f119c183a37c1060c81ae51d8df2481238c0152436afd52e9
MD5 2e9fa36fc11879cec1f1740e65f859f0
BLAKE2b-256 648938543345cbac074072f42a242d56817c4fe5382cb8d61cc000a9bcdcff21

See more details on using hashes here.

File details

Details for the file edsnlp-0.10.4-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: edsnlp-0.10.4-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 1.8 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.18

File hashes

Hashes for edsnlp-0.10.4-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 0fa9d489acfd72054d903414cb5203ed4cb14d3ffab6b293efb68178b5c3515b
MD5 9b3aa9326503d1eacbbaf7c6dfd15e97
BLAKE2b-256 bb047dff617cc96edef5a8da61913dbc0ff247d463a973ced22122bef08005a0

See more details on using hashes here.

File details

Details for the file edsnlp-0.10.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.10.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 51c99b6855e916e9b9c284de1750b7c65383d63f9bd0d0a3cc85d6e35dcf0397
MD5 eed2e5e022380f33cbdfb8d40fada585
BLAKE2b-256 309b5332af6960347500c18a6d48085a83f838ca0259aa9e523419f6b8089685

See more details on using hashes here.

File details

Details for the file edsnlp-0.10.4-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for edsnlp-0.10.4-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 0e4e23c2fdd39649418a37318c8557059bdf6e9b09b465b7f769aaa3a988ae56
MD5 738e57961da1a6176ea1e136f28e2375
BLAKE2b-256 9ef7b03c8371d4596970df2487fa983c6ac212f8592ac698273b7128fa751a9f

See more details on using hashes here.

File details

Details for the file edsnlp-0.10.4-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.10.4-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 89b621a514a914a052734848f07a2c3ec83acb68a7b44120238c5e6aaa413086
MD5 e353a2f1d94c8b960e891d1606b0f1a1
BLAKE2b-256 3b4a5c695798de19b9500b0d1ffd2dcd4d6915feba172146f825d5a226fd9d16

See more details on using hashes here.

File details

Details for the file edsnlp-0.10.4-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: edsnlp-0.10.4-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 1.8 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.18

File hashes

Hashes for edsnlp-0.10.4-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 3bda94c496f19d34ff6b5a709db800bacf5af9b951baff887f29f99b1f94b768
MD5 b6204bcd5bb0bbc542c300479856714e
BLAKE2b-256 bb0409b58beb3aed8f2e5b5df872e0fec7c86472195af25366fbffbd51ef8d10

See more details on using hashes here.

File details

Details for the file edsnlp-0.10.4-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.10.4-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 226b19698a4450b630baecd8e4662c3fa385adf816408e595773ccfae426eaae
MD5 ff2dd10354bb85b839713b7a1ec76c59
BLAKE2b-256 9eaaf71551cfc63252cfc69c8489d3759baca43c06de731ee3508c44581ca931

See more details on using hashes here.

File details

Details for the file edsnlp-0.10.4-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.10.4-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d3eab88e8eb75677263f257c893c33da1cae0167ccc12f763a4bd5b2095be2e6
MD5 a74a4d6df78e865a8c7686bf58ea3bfc
BLAKE2b-256 884b5131774306ac0bf35070cb3464f72f4d12a9d4920c73fc3ec08147a7d887

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page