Skip to main content

Modular, fast NLP framework, compatible with Pytorch and spaCy, offering tailored support for French clinical notes.

Project description

Tests Documentation PyPI Demo Codecov DOI

EDS-NLP

EDS-NLP is a collaborative NLP framework that aims primarily at extracting information from French clinical notes. At its core, it is a collection of components or pipes, either rule-based functions or deep learning modules. These components are organized into a novel efficient and modular pipeline system, built for hybrid and multitask models. We use spaCy to represent documents and their annotations, and Pytorch as a deep-learning backend for trainable components.

EDS-NLP is versatile and can be used on any textual document. The rule-based components are fully compatible with spaCy's components, and vice versa. This library is a product of collaborative effort, and we encourage further contributions to enhance its capabilities.

Check out our interactive demo !

Features

Quick start

Installation

You can install EDS-NLP via pip. We recommend pinning the library version in your projects, or use a strict package manager like Poetry.

pip install edsnlp==0.10.5

or if you want to use the trainable components (using pytorch)

pip install "edsnlp[ml]==0.10.5"

A first pipeline

Once you've installed the library, let's begin with a very simple example that extracts mentions of COVID19 in a text, and detects whether they are negated.

import edsnlp

nlp = edsnlp.blank("eds")

terms = dict(
    covid=["covid", "coronavirus"],
)

# Split the documents into sentences, this isneeded for negation detection
nlp.add_pipe("eds.sentences")
# Matcher component
nlp.add_pipe("eds.matcher", config=dict(terms=terms))
# Negation detection
nlp.add_pipe("eds.negation")

# Process your text in one call !
doc = nlp("Le patient n'est pas atteint de covid")

doc.ents
# Out: (covid,)

doc.ents[0]._.negation
# Out: True

Documentation & Tutorials

Go to the documentation for more information.

Disclaimer

The performances of an extraction pipeline may depend on the population and documents that are considered.

Contributing to EDS-NLP

We welcome contributions ! Fork the project and propose a pull request. Take a look at the dedicated page for detail.

Citation

If you use EDS-NLP, please cite us as below.

@misc{edsnlp,
  author = {Wajsburt, Perceval and Petit-Jean, Thomas and Dura, Basile and Cohen, Ariel and Jean, Charline and Bey, Romain},
  doi    = {10.5281/zenodo.6424993},
  title  = {EDS-NLP: efficient information extraction from French clinical notes},
  url    = {https://aphp.github.io/edsnlp}
}

Acknowledgement

We would like to thank Assistance Publique – Hôpitaux de Paris, AP-HP Foundation and Inria for funding this project.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

edsnlp-0.10.5.tar.gz (1.5 MB view details)

Uploaded Source

Built Distributions

edsnlp-0.10.5-cp311-cp311-win_amd64.whl (1.8 MB view details)

Uploaded CPython 3.11 Windows x86-64

edsnlp-0.10.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.7 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

edsnlp-0.10.5-cp311-cp311-macosx_11_0_arm64.whl (1.8 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

edsnlp-0.10.5-cp311-cp311-macosx_10_9_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

edsnlp-0.10.5-cp310-cp310-win_amd64.whl (1.8 MB view details)

Uploaded CPython 3.10 Windows x86-64

edsnlp-0.10.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.7 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

edsnlp-0.10.5-cp310-cp310-macosx_11_0_arm64.whl (1.8 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

edsnlp-0.10.5-cp310-cp310-macosx_10_9_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

edsnlp-0.10.5-cp39-cp39-win_amd64.whl (1.8 MB view details)

Uploaded CPython 3.9 Windows x86-64

edsnlp-0.10.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.7 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

edsnlp-0.10.5-cp39-cp39-macosx_11_0_arm64.whl (1.8 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

edsnlp-0.10.5-cp39-cp39-macosx_10_9_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

edsnlp-0.10.5-cp38-cp38-win_amd64.whl (1.8 MB view details)

Uploaded CPython 3.8 Windows x86-64

edsnlp-0.10.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.7 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

edsnlp-0.10.5-cp38-cp38-macosx_11_0_arm64.whl (1.8 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

edsnlp-0.10.5-cp38-cp38-macosx_10_9_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

edsnlp-0.10.5-cp37-cp37m-win_amd64.whl (1.8 MB view details)

Uploaded CPython 3.7m Windows x86-64

edsnlp-0.10.5-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

edsnlp-0.10.5-cp37-cp37m-macosx_10_9_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file edsnlp-0.10.5.tar.gz.

File metadata

  • Download URL: edsnlp-0.10.5.tar.gz
  • Upload date:
  • Size: 1.5 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.18

File hashes

Hashes for edsnlp-0.10.5.tar.gz
Algorithm Hash digest
SHA256 7bbb5c9b9700c58aa2bbec83a36b1628cd3f0b5b282e594e1718be54aef2a0c2
MD5 4d9494caaf0bb7405be14889be2746ea
BLAKE2b-256 81972570f9bf397da1041ce8e5d5fe1e901ae6e1f403a91384c029f0d34f2aac

See more details on using hashes here.

Provenance

File details

Details for the file edsnlp-0.10.5-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: edsnlp-0.10.5-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 1.8 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.18

File hashes

Hashes for edsnlp-0.10.5-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 932f881b3ad20ba6a6a5afda69f8492b142fde8e07cc1e1317e727b2f02d0751
MD5 9acb9da65949cf975e22f94f77165ec9
BLAKE2b-256 51b3d59cad28a78b8ba4d2bd30ee9022e804c2221a72a5158e67c7bcce247073

See more details on using hashes here.

Provenance

File details

Details for the file edsnlp-0.10.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.10.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a3df5812d9d1e6edc4f5e4709102950b15d79f7f73d1bd4a542adaa5450ab8c3
MD5 36f21ac9a3e57130a95795fc0e0bb006
BLAKE2b-256 cfa315fc65324b1b3bed8d45d3b64f6178c1b8b46f185a7232efe8d524eb369c

See more details on using hashes here.

Provenance

File details

Details for the file edsnlp-0.10.5-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for edsnlp-0.10.5-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 fe7faab540465fb0a8d1f1ba8a84ed0472283b1f11ac4b6e39610efbfacc6843
MD5 a185a21f0ff51125ae388c50feb56e79
BLAKE2b-256 d193643997b3576e8c2e2b4ff97e6ab287838d5314486e8a91c72e5135a1ddb8

See more details on using hashes here.

Provenance

File details

Details for the file edsnlp-0.10.5-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.10.5-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 3a2d3a3213cbc2e5892ac4df117881120fd65e0bacbc0560fb5578405821c551
MD5 247ae9ce35e7ae82c502351a2ea98e05
BLAKE2b-256 1d3fdea5395a984fd89f526d47ad076c26005f90c64227d812a0f35d30f2ac1e

See more details on using hashes here.

Provenance

File details

Details for the file edsnlp-0.10.5-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: edsnlp-0.10.5-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 1.8 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.18

File hashes

Hashes for edsnlp-0.10.5-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 a0954196da09d84387eb983ce7cb133c717ec7c19bfcaecf8bb927ec614df449
MD5 dfe9791c494744b82c7182eca533be9f
BLAKE2b-256 0752f8291298420502600c8acf1cc1b34911524ac2058380be9097ba5e6b4150

See more details on using hashes here.

Provenance

File details

Details for the file edsnlp-0.10.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.10.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e65865b5b90349245cc13a409ab1532de4286cf1ca7a50225e5757ddcae4da41
MD5 0f3e62c16be3f0d94fe1ee5aed63d76a
BLAKE2b-256 2123eef9f5a40b9b918197da7c2b8fa29821a828a9223023c43947ba9ece8501

See more details on using hashes here.

Provenance

File details

Details for the file edsnlp-0.10.5-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for edsnlp-0.10.5-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 cbacaa73b66dd3e0f5e684c145d60688a0fdff1749926ecd23097644c6fe7084
MD5 8d737d673e17c025e946b30e08765321
BLAKE2b-256 66fe94e9758ea788caef3cc7ba0bd5cdda06af6c4ef5c7b6f1be1fd6f17841cd

See more details on using hashes here.

Provenance

File details

Details for the file edsnlp-0.10.5-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.10.5-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 aa97b54111ee754bad19cb3dd945306605e87f39eb0f1dfecdd2377bf55db901
MD5 362758610931babcbf50828f70b31e0a
BLAKE2b-256 3aec96c8c68f8ca3befcc6ff9d32f66485beef08a5547c807180d515cdb75a83

See more details on using hashes here.

Provenance

File details

Details for the file edsnlp-0.10.5-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: edsnlp-0.10.5-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 1.8 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.18

File hashes

Hashes for edsnlp-0.10.5-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 b0a916dd55e857d6720f775b18c2cea85688600c34c53b4b593d51de5ab254d2
MD5 24ca6c15c6530bd94295ed3c03d60275
BLAKE2b-256 b681e671c9419136efcff7e6bfe9c3ce71c10426627b2a412121e70a757a2353

See more details on using hashes here.

Provenance

File details

Details for the file edsnlp-0.10.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.10.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5fdf5d2ffc080ecd4bef770ce404f9f1da62fec0ae918674c88a8d3232f2ad82
MD5 ee293272d5c52588bfe3716592e64e22
BLAKE2b-256 f3f2a2bee67498dff940f7611effb477cbda54ade30930257f90ce86f0b71de9

See more details on using hashes here.

Provenance

File details

Details for the file edsnlp-0.10.5-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for edsnlp-0.10.5-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 6a53d0ad4b056fc3b14a59344baac8d189a0a864981d7281b57cdb9a52a0f262
MD5 5eee904cd2fde4db87d4982c6ecbcacb
BLAKE2b-256 f336eaf4946ad39f836e1f268e41c2da997cc06311a454c9bde1b57e4b7435ee

See more details on using hashes here.

Provenance

File details

Details for the file edsnlp-0.10.5-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.10.5-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 5ce7d0966ffcf174903b8eb2ff06b4a842363796f5fa717ec6796252e32a9d15
MD5 93065254b7355ebf3c7c33ff5b6579d6
BLAKE2b-256 ecd3c6a863d7297a428be32d1418a9a8931b41b0b73abd0777a224bd3bace480

See more details on using hashes here.

Provenance

File details

Details for the file edsnlp-0.10.5-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: edsnlp-0.10.5-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 1.8 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.18

File hashes

Hashes for edsnlp-0.10.5-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 5cad73fcd3d3879fa4eec4535f1afabd4d94e06827f7195f2c00561f15b6a0bd
MD5 68ba85efaaa1b46031cc0ad599d13c28
BLAKE2b-256 fc60f5e7040b2af33395353f642331a39a9788b419271961ef7489cf29bbc691

See more details on using hashes here.

Provenance

File details

Details for the file edsnlp-0.10.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.10.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1e565765a426b7f92787f6aaffb1b14a959931ad27f5596f41194e0e2876a750
MD5 4d204902ea48503d2ca4b9cd714347df
BLAKE2b-256 c618fc421434ebc1813ec53adfa62ae4bae8a4fe2b60d48c1ffd92f12d3167dd

See more details on using hashes here.

Provenance

File details

Details for the file edsnlp-0.10.5-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for edsnlp-0.10.5-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 06eee3954dc19020b18cf43632b7b89e06691649f37676bb632f33d54245c69e
MD5 b62f15697d3d2bf2b3f7bf69dfee0b2b
BLAKE2b-256 a9402e1f7d6eed12e4a319daa6a50d9791521c9e26509828769e2e740c0128e6

See more details on using hashes here.

Provenance

File details

Details for the file edsnlp-0.10.5-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.10.5-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 800a53dee2f35416f19f6c6b979d2ef9e57d5ee6d43f11fb71e11ad17c5bc31f
MD5 77cac0311e86ef10c0766ed1b920825f
BLAKE2b-256 1d580cd58b764d35a6a2eaf57215de9ec5b3792630e4d2d3a78f5558ed322eec

See more details on using hashes here.

Provenance

File details

Details for the file edsnlp-0.10.5-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: edsnlp-0.10.5-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 1.8 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.18

File hashes

Hashes for edsnlp-0.10.5-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 06c0248f8fc68240ee85b610f41eeb59cffded183607a26b61e3c1459f276f47
MD5 56ebc8e7476d7753b0ae6046a5ba36b6
BLAKE2b-256 7af6ffb7277588b41169634fe1be77b8b771f2470a046982cd7c19fde098599d

See more details on using hashes here.

Provenance

File details

Details for the file edsnlp-0.10.5-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.10.5-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2a8ef0a42b5ab1e438a0b42b9fa12dec5ba5a00ff9c4244f44ff7aa5cbee7d5c
MD5 870e408dc9c641a68292fe66a0ceeac9
BLAKE2b-256 99805f6525035d9fff957c4262b87e8b374e003505681f2acfa453edbdcb1c12

See more details on using hashes here.

Provenance

File details

Details for the file edsnlp-0.10.5-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.10.5-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 e398be7d034ecd45a5582968d396b9c391a9e99017f5dd0c4b466343e19577ac
MD5 46c6df279425006231465a13327d2599
BLAKE2b-256 8a0504941c1262c3ae9349fafde015d552b13b74ceb4aea318a461eafd9227f2

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page