Skip to main content

Modular, fast NLP framework, compatible with Pytorch and spaCy, offering tailored support for French clinical notes.

Project description

Tests Documentation PyPI Demo Codecov DOI

EDS-NLP

EDS-NLP is a collaborative NLP framework that aims primarily at extracting information from French clinical notes. At its core, it is a collection of components or pipes, either rule-based functions or deep learning modules. These components are organized into a novel efficient and modular pipeline system, built for hybrid and multitask models. We use spaCy to represent documents and their annotations, and Pytorch as a deep-learning backend for trainable components.

EDS-NLP is versatile and can be used on any textual document. The rule-based components are fully compatible with spaCy's components, and vice versa. This library is a product of collaborative effort, and we encourage further contributions to enhance its capabilities.

Check out our interactive demo !

Features

Quick start

Installation

You can install EDS-NLP via pip. We recommend pinning the library version in your projects, or use a strict package manager like Poetry.

pip install edsnlp==0.10.6

or if you want to use the trainable components (using pytorch)

pip install "edsnlp[ml]==0.10.6"

A first pipeline

Once you've installed the library, let's begin with a very simple example that extracts mentions of COVID19 in a text, and detects whether they are negated.

import edsnlp

nlp = edsnlp.blank("eds")

terms = dict(
    covid=["covid", "coronavirus"],
)

# Split the documents into sentences, this isneeded for negation detection
nlp.add_pipe("eds.sentences")
# Matcher component
nlp.add_pipe("eds.matcher", config=dict(terms=terms))
# Negation detection
nlp.add_pipe("eds.negation")

# Process your text in one call !
doc = nlp("Le patient n'est pas atteint de covid")

doc.ents
# Out: (covid,)

doc.ents[0]._.negation
# Out: True

Documentation & Tutorials

Go to the documentation for more information.

Disclaimer

The performances of an extraction pipeline may depend on the population and documents that are considered.

Contributing to EDS-NLP

We welcome contributions ! Fork the project and propose a pull request. Take a look at the dedicated page for detail.

Citation

If you use EDS-NLP, please cite us as below.

@misc{edsnlp,
  author = {Wajsburt, Perceval and Petit-Jean, Thomas and Dura, Basile and Cohen, Ariel and Jean, Charline and Bey, Romain},
  doi    = {10.5281/zenodo.6424993},
  title  = {EDS-NLP: efficient information extraction from French clinical notes},
  url    = {https://aphp.github.io/edsnlp}
}

Acknowledgement

We would like to thank Assistance Publique – Hôpitaux de Paris, AP-HP Foundation and Inria for funding this project.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

edsnlp-0.10.6.tar.gz (1.6 MB view details)

Uploaded Source

Built Distributions

edsnlp-0.10.6-cp312-cp312-win_amd64.whl (1.9 MB view details)

Uploaded CPython 3.12 Windows x86-64

edsnlp-0.10.6-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.9 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

edsnlp-0.10.6-cp312-cp312-macosx_11_0_arm64.whl (1.9 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

edsnlp-0.10.6-cp312-cp312-macosx_10_9_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

edsnlp-0.10.6-cp311-cp311-win_amd64.whl (1.9 MB view details)

Uploaded CPython 3.11 Windows x86-64

edsnlp-0.10.6-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.9 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

edsnlp-0.10.6-cp311-cp311-macosx_11_0_arm64.whl (1.9 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

edsnlp-0.10.6-cp311-cp311-macosx_10_9_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

edsnlp-0.10.6-cp310-cp310-win_amd64.whl (1.9 MB view details)

Uploaded CPython 3.10 Windows x86-64

edsnlp-0.10.6-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

edsnlp-0.10.6-cp310-cp310-macosx_11_0_arm64.whl (1.9 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

edsnlp-0.10.6-cp310-cp310-macosx_10_9_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

edsnlp-0.10.6-cp39-cp39-win_amd64.whl (1.9 MB view details)

Uploaded CPython 3.9 Windows x86-64

edsnlp-0.10.6-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

edsnlp-0.10.6-cp39-cp39-macosx_11_0_arm64.whl (1.9 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

edsnlp-0.10.6-cp39-cp39-macosx_10_9_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

edsnlp-0.10.6-cp38-cp38-win_amd64.whl (1.9 MB view details)

Uploaded CPython 3.8 Windows x86-64

edsnlp-0.10.6-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.9 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

edsnlp-0.10.6-cp38-cp38-macosx_11_0_arm64.whl (1.9 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

edsnlp-0.10.6-cp38-cp38-macosx_10_9_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

edsnlp-0.10.6-cp37-cp37m-win_amd64.whl (1.9 MB view details)

Uploaded CPython 3.7m Windows x86-64

edsnlp-0.10.6-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

edsnlp-0.10.6-cp37-cp37m-macosx_10_9_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file edsnlp-0.10.6.tar.gz.

File metadata

  • Download URL: edsnlp-0.10.6.tar.gz
  • Upload date:
  • Size: 1.6 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.18

File hashes

Hashes for edsnlp-0.10.6.tar.gz
Algorithm Hash digest
SHA256 dfe7bf7051e25b44f78c36095c1c23b2b2399eb31ccdad0941c01e97babf150a
MD5 68e291799dc7b7d382a05fec8e536be7
BLAKE2b-256 4d0bf29081693eed30cd678ed7fe4508a6da1f399a6d8570443834ea860963d7

See more details on using hashes here.

File details

Details for the file edsnlp-0.10.6-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: edsnlp-0.10.6-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.18

File hashes

Hashes for edsnlp-0.10.6-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 46276ce7cf61be9e10e01ea82d1bef3fb9853da58fbeec3b35f8baa9a2e9223e
MD5 944922e5d38d45afededc2e9411d9eec
BLAKE2b-256 024b762db6c90b908947c649fa9af914390fa723029926f2a8d6f11f572665c3

See more details on using hashes here.

File details

Details for the file edsnlp-0.10.6-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.10.6-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 cbf5623823324be0a8672e868215b599386736eaf9bc42b8118429951bd82208
MD5 10032c23b80b0e9eac5053adeebb9521
BLAKE2b-256 fc80d44ceb437b95b21b3629e27141fb6b10c0c76248cbebd7a191bb06d9e71a

See more details on using hashes here.

File details

Details for the file edsnlp-0.10.6-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for edsnlp-0.10.6-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 ceb5884af9077016fee0dc952fcbe910dbcc66beaf1507dee7dad059efdd9a41
MD5 76371aa1c89415252533de141a4249b8
BLAKE2b-256 ed73ad655901d144477708497db5c3c0df5597df2d7d195684c2ae9dc9456bf5

See more details on using hashes here.

File details

Details for the file edsnlp-0.10.6-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.10.6-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 0330f6d65cb39336ce91307bc1a4d52125398d87f7a8376a95ae1bd0d2761ff3
MD5 0a37418184e6fd37af0c8160c9ce01ed
BLAKE2b-256 846b984ff18645159009218622c6a0d958d46c9499bd561651ae93d5cafb97e3

See more details on using hashes here.

File details

Details for the file edsnlp-0.10.6-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: edsnlp-0.10.6-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.18

File hashes

Hashes for edsnlp-0.10.6-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 b39861d92f39aa4269e4fac1b4d30b69a46296e1d6b1c54d4289774e5eca6366
MD5 8af075dff6315f189a675bb89b5c8ceb
BLAKE2b-256 5c331403273385cd58476818ce47b703b8aab47ee6145b2e13d89e3e04fe9ce1

See more details on using hashes here.

File details

Details for the file edsnlp-0.10.6-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.10.6-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f132a69f4aee07cda87872ade1356eb19840f4ad114ee72aff0bd053f50d51db
MD5 2c585d48b404a7e608909d04a2c6c76a
BLAKE2b-256 0a7ecea9626eedf4811b7123b7865bb61243b51cb5ae576ed7a6574f0435814e

See more details on using hashes here.

File details

Details for the file edsnlp-0.10.6-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for edsnlp-0.10.6-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 37aa1fc495cdfc424834f2ad1df74f14a3e9e853faae037df5e5f2377e80291e
MD5 915b3d72420300a8e7623c63c59f975f
BLAKE2b-256 77bc435882b9b9b52cf4196645c423d43259ec833b5ab023a9d533a18a323850

See more details on using hashes here.

File details

Details for the file edsnlp-0.10.6-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.10.6-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 4d4ef027126cdc461730f796cc8987e70befcf665eee8b29001c97a0d2489e30
MD5 b52d9a522545fd671e393d4d51035f2c
BLAKE2b-256 efee4e0134cbe20c511e44b58dfcc18abfca2735df895d32b99f4a119baa7fad

See more details on using hashes here.

File details

Details for the file edsnlp-0.10.6-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: edsnlp-0.10.6-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.18

File hashes

Hashes for edsnlp-0.10.6-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 e0589b79252bfbfa5479aae4abcafe0641f79fc22597ca1150d6e73e612ddebe
MD5 49fdfeb25ee339bdc5cb618cc43d6eec
BLAKE2b-256 55df00e9234fd36c78cf509d118f72ba8e0e1112b9d7510d694fc9fd605bd4e5

See more details on using hashes here.

File details

Details for the file edsnlp-0.10.6-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.10.6-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d89c9b39347530fdf4181a8611c70e421cf72be19b377900b7bb3fed48428572
MD5 bd097591af8e318bf6ffb1bbe5288722
BLAKE2b-256 71b34beed8dedc9d6195af8c861e26b06f2173967ab4a1cfa78d98150c1b2b78

See more details on using hashes here.

File details

Details for the file edsnlp-0.10.6-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for edsnlp-0.10.6-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 22dba1105fc978a0faeb8d6d19cd6b559aabfdd5a6bdba1c97ce44f5bf40f336
MD5 33333eabfc77351e3d22a4d22f71e279
BLAKE2b-256 81a7050444688142f2633f36c7f52f2eecbcfaf0049607982ce5073687b33aa8

See more details on using hashes here.

File details

Details for the file edsnlp-0.10.6-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.10.6-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 a08e51f918d29d9c22a0805be50790aba2872ccdf589027587bb213c8745c93b
MD5 9701b8d30f696b4366e9e18493c50ac6
BLAKE2b-256 ff9196bd66d64f40e2db72b37477edc272739f097df4186e30266daf667a792b

See more details on using hashes here.

File details

Details for the file edsnlp-0.10.6-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: edsnlp-0.10.6-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.18

File hashes

Hashes for edsnlp-0.10.6-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 4768078e2d4ad227d5eb0cf748998410d8d32a726a9cc73b34b60e1b8145ef4e
MD5 20475e347b48b079b8cac49871cdbb7a
BLAKE2b-256 1ceac3bac5caa25b4fc8714922a1641ebe334603484689f919c11265261c0666

See more details on using hashes here.

File details

Details for the file edsnlp-0.10.6-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.10.6-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5c50315cc8d47668a5d094ec1b329fface9511d5397872fe11673aa872f63883
MD5 8824f1bcca6ce48e3ff780786465bf36
BLAKE2b-256 0d8ad128512e2186ad2da9cd78c931c64681cb5160161c34e86bb3098b4ceef0

See more details on using hashes here.

File details

Details for the file edsnlp-0.10.6-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for edsnlp-0.10.6-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 808157ccdf9deba6488468b6f718637f8a35bb9f4c9afd65618816d8df4f0e44
MD5 1adf0bd7378b52a7ab7a7d5862043abe
BLAKE2b-256 07496816beaa70f096a76ce21763d2d67b8442d48982135f960adead7cac7427

See more details on using hashes here.

File details

Details for the file edsnlp-0.10.6-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.10.6-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 72769bc950d753afc3f5c779cfc93ab0706ef245d97437bae02fd65c15869cbc
MD5 90a7337fa533bb7bfc6a55fe06108ba5
BLAKE2b-256 53901de9c681a03a7d40410acde010ee8c28c1e5b5b760f046c6346dd7adeed6

See more details on using hashes here.

File details

Details for the file edsnlp-0.10.6-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: edsnlp-0.10.6-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.18

File hashes

Hashes for edsnlp-0.10.6-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 cb53ff0b63b3caf9278ad77c2aa507d640518d59b27e43fe5e372c9a01b8a6c5
MD5 94b8b2463a0431d8fdcd20c3313bb6f3
BLAKE2b-256 5b0d82b42aa4849e0cf7d9844f63184cc7a94e81f11e2e56bbbfe05b154cbc7c

See more details on using hashes here.

File details

Details for the file edsnlp-0.10.6-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.10.6-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7d16c06a140c92046c1b043b3fc1c4735c64fbac35d8d6d1d880ef0b2bc70c36
MD5 af8262920942189db4db7418f775c9a2
BLAKE2b-256 a4122f40c7890bd6a8848c7cd66079f3642f5c9d1b776ef4a96296f4f4037a5c

See more details on using hashes here.

File details

Details for the file edsnlp-0.10.6-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for edsnlp-0.10.6-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 a54873239e0c85f2d0c152df4aca03ac534ba09d036729d99a902e26eb14296c
MD5 c9c77883a6404ae900dea86eb7ec7662
BLAKE2b-256 b7c8227a3d350f53a7856b498c78e86ad574af0222f8b7be1aed96ced63dc935

See more details on using hashes here.

File details

Details for the file edsnlp-0.10.6-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.10.6-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ef64855e7e74d50f0710bd0f1a1b21b2add98235806a895394607edb382b112e
MD5 1ec17844c7a420b065e5e6920440a806
BLAKE2b-256 def9f7d2a21bedb85fdcd0e0c0973d62213b4ffb462fdaa297bbb7c9f58236be

See more details on using hashes here.

File details

Details for the file edsnlp-0.10.6-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: edsnlp-0.10.6-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.18

File hashes

Hashes for edsnlp-0.10.6-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 759290760c44dfb44fb924d14420a5c7035661dd41df0b6937b141b3f39190c3
MD5 f62ba20d4a0fc365f9784615f6f6609a
BLAKE2b-256 459ab5fa862b855331e1f3b17f86a80d99e686fe39810540f9ac81b14decfbd2

See more details on using hashes here.

File details

Details for the file edsnlp-0.10.6-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.10.6-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a6ae515c64975f38ccc9f4f38790ae88597b7fa7f7e54734b5548fb84e135554
MD5 81b9e276291c060d770311e440520526
BLAKE2b-256 5af03ecb40bd64c2519a1b113569147cc628d052a1feac6c0a1b2f85e0da7043

See more details on using hashes here.

File details

Details for the file edsnlp-0.10.6-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.10.6-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 3ba418b2c05b0a63f6247854fd7d118335772753f9cdf53e397800dc740d79f6
MD5 8ac3d8ab518df7bd2a493b462975f361
BLAKE2b-256 cc4a687a0e9cc8f6c66ef1c606aee8eba8453bd6fdb244cb0a84050e13118794

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page