Skip to main content

Modular, fast NLP framework, compatible with Pytorch and spaCy, offering tailored support for French clinical notes.

Project description

Tests Documentation PyPI Demo Codecov DOI

EDS-NLP

EDS-NLP is a collaborative NLP framework that aims primarily at extracting information from French clinical notes. At its core, it is a collection of components or pipes, either rule-based functions or deep learning modules. These components are organized into a novel efficient and modular pipeline system, built for hybrid and multitask models. We use spaCy to represent documents and their annotations, and Pytorch as a deep-learning backend for trainable components.

EDS-NLP is versatile and can be used on any textual document. The rule-based components are fully compatible with spaCy's components, and vice versa. This library is a product of collaborative effort, and we encourage further contributions to enhance its capabilities.

Check out our interactive demo !

Features

Quick start

Installation

You can install EDS-NLP via pip. We recommend pinning the library version in your projects, or use a strict package manager like Poetry.

pip install edsnlp==0.11.0

or if you want to use the trainable components (using pytorch)

pip install "edsnlp[ml]==0.11.0"

A first pipeline

Once you've installed the library, let's begin with a very simple example that extracts mentions of COVID19 in a text, and detects whether they are negated.

import edsnlp, edsnlp.pipes as eds

nlp = edsnlp.blank("eds")

terms = dict(
    covid=["covid", "coronavirus"],
)

# Split the documents into sentences, this isneeded for negation detection
nlp.add_pipe(eds.sentences())
# Matcher component
nlp.add_pipe(eds.matcher(terms=terms))
# Negation detection (we also support spacy-like API !)
nlp.add_pipe("eds.negation")

# Process your text in one call !
doc = nlp("Le patient n'est pas atteint de covid")

doc.ents
# Out: (covid,)

doc.ents[0]._.negation
# Out: True

Documentation & Tutorials

Go to the documentation for more information.

Disclaimer

The performances of an extraction pipeline may depend on the population and documents that are considered.

Contributing to EDS-NLP

We welcome contributions ! Fork the project and propose a pull request. Take a look at the dedicated page for detail.

Citation

If you use EDS-NLP, please cite us as below.

@misc{edsnlp,
  author = {Wajsburt, Perceval and Petit-Jean, Thomas and Dura, Basile and Cohen, Ariel and Jean, Charline and Bey, Romain},
  doi    = {10.5281/zenodo.6424993},
  title  = {EDS-NLP: efficient information extraction from French clinical notes},
  url    = {https://aphp.github.io/edsnlp}
}

Acknowledgement

We would like to thank Assistance Publique – Hôpitaux de Paris, AP-HP Foundation and Inria for funding this project.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

edsnlp-0.11.0.tar.gz (1.6 MB view details)

Uploaded Source

Built Distributions

edsnlp-0.11.0-cp312-cp312-win_amd64.whl (1.9 MB view details)

Uploaded CPython 3.12 Windows x86-64

edsnlp-0.11.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.9 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

edsnlp-0.11.0-cp312-cp312-macosx_11_0_arm64.whl (1.9 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

edsnlp-0.11.0-cp312-cp312-macosx_10_9_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

edsnlp-0.11.0-cp311-cp311-win_amd64.whl (1.9 MB view details)

Uploaded CPython 3.11 Windows x86-64

edsnlp-0.11.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.9 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

edsnlp-0.11.0-cp311-cp311-macosx_11_0_arm64.whl (1.9 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

edsnlp-0.11.0-cp311-cp311-macosx_10_9_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

edsnlp-0.11.0-cp310-cp310-win_amd64.whl (1.9 MB view details)

Uploaded CPython 3.10 Windows x86-64

edsnlp-0.11.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

edsnlp-0.11.0-cp310-cp310-macosx_11_0_arm64.whl (1.9 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

edsnlp-0.11.0-cp310-cp310-macosx_10_9_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

edsnlp-0.11.0-cp39-cp39-win_amd64.whl (1.9 MB view details)

Uploaded CPython 3.9 Windows x86-64

edsnlp-0.11.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

edsnlp-0.11.0-cp39-cp39-macosx_11_0_arm64.whl (1.9 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

edsnlp-0.11.0-cp39-cp39-macosx_10_9_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

edsnlp-0.11.0-cp38-cp38-win_amd64.whl (1.9 MB view details)

Uploaded CPython 3.8 Windows x86-64

edsnlp-0.11.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.9 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

edsnlp-0.11.0-cp38-cp38-macosx_11_0_arm64.whl (1.9 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

edsnlp-0.11.0-cp38-cp38-macosx_10_9_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

edsnlp-0.11.0-cp37-cp37m-win_amd64.whl (1.9 MB view details)

Uploaded CPython 3.7m Windows x86-64

edsnlp-0.11.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

edsnlp-0.11.0-cp37-cp37m-macosx_10_9_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file edsnlp-0.11.0.tar.gz.

File metadata

  • Download URL: edsnlp-0.11.0.tar.gz
  • Upload date:
  • Size: 1.6 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.19

File hashes

Hashes for edsnlp-0.11.0.tar.gz
Algorithm Hash digest
SHA256 58895850d44f717426a19cc08504dc78898b4ebdb6943e18745b9275b6bd6950
MD5 a878def8017c7f85e71993b958298b63
BLAKE2b-256 d0304e970ba8a9c0335b645cd3a66d81d820198aadcf33a1ca658f84a3ce1ac1

See more details on using hashes here.

File details

Details for the file edsnlp-0.11.0-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: edsnlp-0.11.0-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.19

File hashes

Hashes for edsnlp-0.11.0-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 c660d7ea5f1b1a18f2f475b980886e31db683d3cd5311033b2fa11c670903f5d
MD5 7116fd4d7ef6300843c6fb3bdcd9d192
BLAKE2b-256 cdb96b0429b5cc617605d4e7ab57e3991bb9e8b24211968d4e4d36580471caa9

See more details on using hashes here.

File details

Details for the file edsnlp-0.11.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.11.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 bce957b3a1acaa9c8ec8f8abec866d4a048dc695119ec98e11dd964585c61aef
MD5 017991253174a40fbe9291a4cec3043a
BLAKE2b-256 2cd064a6ca93e7569c8bbab8ed41b1fa7d0fa69c3892aa4c977ac3168f044c24

See more details on using hashes here.

File details

Details for the file edsnlp-0.11.0-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for edsnlp-0.11.0-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 d33a640d2e98b7578600be3aede59074b94621b0310ce3b37133b44f718b8af3
MD5 1f085758ae539c4179dce0856246f5ba
BLAKE2b-256 ae2fd9308746bcfccdf299b18459c022abfb6b3384fdefe2e16fdd087e7f64c9

See more details on using hashes here.

File details

Details for the file edsnlp-0.11.0-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.11.0-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d7887275979992a14d0c4b5c250f2fe76de62ff41c0acaa59871a5c391cbf9bd
MD5 e069023054cc7ef6a3efc6f8cbeea36f
BLAKE2b-256 11f6a8d7d0d05faa52b71a11f265b6b20f6eb0d39243197cf14a106e7b89e203

See more details on using hashes here.

File details

Details for the file edsnlp-0.11.0-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: edsnlp-0.11.0-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.19

File hashes

Hashes for edsnlp-0.11.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 3f7453dd421738bbcd1ee1e1c412a30f34e942f6b55052b107439527f289a75c
MD5 9394a4789a036492b4d1ce43e8ec0602
BLAKE2b-256 3d024255b03f7930e53a960883bda68649fa043912c8302b09db10196363c280

See more details on using hashes here.

File details

Details for the file edsnlp-0.11.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.11.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 fed96ae1146d45dc6cfb4ec7d7162b7f32f447c39e5ab5f5aa845c08de74822d
MD5 176a596a5e015d415215d39bacddbdeb
BLAKE2b-256 fc8ed42fd4b251b49acf52a8f87caecc406558987fe198e8aff6d8ae47d474c9

See more details on using hashes here.

File details

Details for the file edsnlp-0.11.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for edsnlp-0.11.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 1c7eaa1ad301be999d0ae6a0fcd5a125d21b7757f5e0df88202669c3731f60d8
MD5 765f9c4717ca67ebd68cdba31af968ed
BLAKE2b-256 cd6528470895b9385702d76e975b1b5bf093c53495197a6d784c92a7bee12935

See more details on using hashes here.

File details

Details for the file edsnlp-0.11.0-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.11.0-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 02214819734a6fe3bf037a51d25d481f0a97be6cd30c313c5c018503a86cf33b
MD5 a707488357a50f4ec0c81c6b9c9a3df5
BLAKE2b-256 da3da7f41cb1e642e5cfb5a2c97dee498f4eb4538d5f0fb6aa6fc16357b44990

See more details on using hashes here.

File details

Details for the file edsnlp-0.11.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: edsnlp-0.11.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.19

File hashes

Hashes for edsnlp-0.11.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 9b15d54b5ff82fb265f44d5f53a77241962426356d66aed8dbfd034e910206e7
MD5 06b6352ae1c58ebb9f6daa9aacae3653
BLAKE2b-256 d47abd48e0380e38cbe431a68887a1114dfb253f167edf25c90a623eb7c1adf7

See more details on using hashes here.

File details

Details for the file edsnlp-0.11.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.11.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f06fad1f15d58132dc1eca2762cc27df896728545ee759de8938b892b1b7e9f6
MD5 042ba759efadbc15002112d584149e74
BLAKE2b-256 ee2907a5d4a5a11c0b0ade83db73a671502c6f8348c0deb450b0fb849516cb53

See more details on using hashes here.

File details

Details for the file edsnlp-0.11.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for edsnlp-0.11.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 acba02c9c5f5fe5623cd1ae9c119bc1493eeff0f913f832377e56499ae3304af
MD5 cc0addff93d8e4064c24e4529a1220fe
BLAKE2b-256 3e685c0bdff715029cff26a6e46c3a8d634828d1f852562e087029de1abe1012

See more details on using hashes here.

File details

Details for the file edsnlp-0.11.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.11.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 a635d61ab3acefbecc65fd73ee5d607ef285e7d1ff4f42e36cf36e0b0108f51a
MD5 a633cf458b9f0a1714d5055d6d11111d
BLAKE2b-256 d817fd3c96b529afa2cc986b3909aece26bff6fab63287d998318ea8e4d7da09

See more details on using hashes here.

File details

Details for the file edsnlp-0.11.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: edsnlp-0.11.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.19

File hashes

Hashes for edsnlp-0.11.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 959c623e359614c5d236c7aa54ac0c97c1d3840f40fe51d333bfef556444a760
MD5 5c9a6dfeca1bd79bb8528cd15958ab74
BLAKE2b-256 8e5e6b9122fd0608cb6229ec9ecdf06d865038e3886a1af87e5321f0a2f09605

See more details on using hashes here.

File details

Details for the file edsnlp-0.11.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.11.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ec8bc48536e34f9ee211ca77363fc358a842f02bdbd52caa0c4d356c29826c6a
MD5 206d35400073172be7761b97e23e35c3
BLAKE2b-256 9131c62fd6efcf4fa8c06ea48b2d8d228de9a8cddcc0b7c9ac8eddb03b86db88

See more details on using hashes here.

File details

Details for the file edsnlp-0.11.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for edsnlp-0.11.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 071854e37274a4ce41ad1c474ca11b999cd947667ef8d3f1ebf321e1ee554e63
MD5 2bf7684b70ea5dcb24a1e271ff84724b
BLAKE2b-256 83cfd1cb823e000f4e14601a85addfd0a7b50c0203b1d1ccb74e831bccc86cce

See more details on using hashes here.

File details

Details for the file edsnlp-0.11.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.11.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ef13b6ba28158da9f511e0318528d65ead27954b2a2e3db3f8932abb568933a7
MD5 b8e1734a3bdae71459a5b417ee15c3d6
BLAKE2b-256 c8336c90695508406f4b8ad95418cb1095d961bf22db9b321c0885b2fb66cdf5

See more details on using hashes here.

File details

Details for the file edsnlp-0.11.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: edsnlp-0.11.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.19

File hashes

Hashes for edsnlp-0.11.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 3b0e0627b2728999a98cd9b6693b37e75b5f52631d47deea76817d054ce8d087
MD5 fc9659a6aa8fe1d77ae3cb1896070bdc
BLAKE2b-256 3b4593da2887eaaab7ef0b5a390315c7c415ed3a4609dda7289f0a8fdf411f53

See more details on using hashes here.

File details

Details for the file edsnlp-0.11.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.11.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6dc6b5bcaacb3d0b28247554b6aa1e6d6fca6c2e556157c940733bfab76e7e9f
MD5 5016a1734c1ccd6114781a6724c07c12
BLAKE2b-256 11fa565142ead426cdd073ee5e69d935c815636fbde2eebf972e4fbcedf63e73

See more details on using hashes here.

File details

Details for the file edsnlp-0.11.0-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for edsnlp-0.11.0-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 1d0de6e2761a1ed8a0f943be921f9ee041c1dd8f64f71e136f00730554515735
MD5 0a8cef0f255e1f2a95b11e34e04992fd
BLAKE2b-256 607705590080423a38b354a277408e8e26975214f7f0cca15371e3aff4edcd1e

See more details on using hashes here.

File details

Details for the file edsnlp-0.11.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.11.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 acd341fd244d0d7a41c2b5e83fd5d06eb80d4d3cda1c939be8d56ba6c936f4e8
MD5 7b4d414987951416358b1b533b0fc9e6
BLAKE2b-256 785de8cefb1111168d964f1f77ad80619718c551117fe292a15ffb3f2facad23

See more details on using hashes here.

File details

Details for the file edsnlp-0.11.0-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: edsnlp-0.11.0-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.19

File hashes

Hashes for edsnlp-0.11.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 21879a38c60e23cc70010cda74b5fa7b800d6d366523e393c41e395758cc93c6
MD5 1864f2312e3e77066d419964cd305924
BLAKE2b-256 5653a63cd3ee69c370d50131ba5c553ffbc784bdb388c953aa7cb2db228ea821

See more details on using hashes here.

File details

Details for the file edsnlp-0.11.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.11.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a630bd6d355198226376bfe10ff5e9b6aad900fffd5081b3bd09bca1c00b91b6
MD5 2937719859071b89b4b4f62c8f338b8e
BLAKE2b-256 ca4cd600625090a0880ea20e3b198e6b57642a3ae12ed06e0ca7af6127358e38

See more details on using hashes here.

File details

Details for the file edsnlp-0.11.0-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.11.0-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 f535463d3e61cdb7a41f38fa336c23c191dab6f2e361b60b5aecedba70160f13
MD5 a5b0d7bf7aa3a34739e2d5066769df54
BLAKE2b-256 9c4e57c7540e3340fd1509fed7ed31bd6b40c9ef24aa98903736684e9192ee36

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page