Skip to main content

Modular, fast NLP framework, compatible with Pytorch and spaCy, offering tailored support for French clinical notes.

Project description

Tests Documentation PyPI Demo Codecov DOI

EDS-NLP

EDS-NLP is a collaborative NLP framework that aims primarily at extracting information from French clinical notes. At its core, it is a collection of components or pipes, either rule-based functions or deep learning modules. These components are organized into a novel efficient and modular pipeline system, built for hybrid and multitask models. We use spaCy to represent documents and their annotations, and Pytorch as a deep-learning backend for trainable components.

EDS-NLP is versatile and can be used on any textual document. The rule-based components are fully compatible with spaCy's components, and vice versa. This library is a product of collaborative effort, and we encourage further contributions to enhance its capabilities.

Check out our interactive demo !

Features

Quick start

Installation

You can install EDS-NLP via pip. We recommend pinning the library version in your projects, or use a strict package manager like Poetry.

pip install edsnlp==0.11.1

or if you want to use the trainable components (using pytorch)

pip install "edsnlp[ml]==0.11.1"

A first pipeline

Once you've installed the library, let's begin with a very simple example that extracts mentions of COVID19 in a text, and detects whether they are negated.

import edsnlp, edsnlp.pipes as eds

nlp = edsnlp.blank("eds")

terms = dict(
    covid=["covid", "coronavirus"],
)

# Split the documents into sentences, this isneeded for negation detection
nlp.add_pipe(eds.sentences())
# Matcher component
nlp.add_pipe(eds.matcher(terms=terms))
# Negation detection (we also support spacy-like API !)
nlp.add_pipe("eds.negation")

# Process your text in one call !
doc = nlp("Le patient n'est pas atteint de covid")

doc.ents
# Out: (covid,)

doc.ents[0]._.negation
# Out: True

Documentation & Tutorials

Go to the documentation for more information.

Disclaimer

The performances of an extraction pipeline may depend on the population and documents that are considered.

Contributing to EDS-NLP

We welcome contributions ! Fork the project and propose a pull request. Take a look at the dedicated page for detail.

Citation

If you use EDS-NLP, please cite us as below.

@misc{edsnlp,
  author = {Wajsburt, Perceval and Petit-Jean, Thomas and Dura, Basile and Cohen, Ariel and Jean, Charline and Bey, Romain},
  doi    = {10.5281/zenodo.6424993},
  title  = {EDS-NLP: efficient information extraction from French clinical notes},
  url    = {https://aphp.github.io/edsnlp}
}

Acknowledgement

We would like to thank Assistance Publique – Hôpitaux de Paris, AP-HP Foundation and Inria for funding this project.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

edsnlp-0.11.1.tar.gz (1.6 MB view details)

Uploaded Source

Built Distributions

edsnlp-0.11.1-cp312-cp312-win_amd64.whl (1.9 MB view details)

Uploaded CPython 3.12 Windows x86-64

edsnlp-0.11.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.9 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

edsnlp-0.11.1-cp312-cp312-macosx_11_0_arm64.whl (2.0 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

edsnlp-0.11.1-cp312-cp312-macosx_10_9_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

edsnlp-0.11.1-cp311-cp311-win_amd64.whl (1.9 MB view details)

Uploaded CPython 3.11 Windows x86-64

edsnlp-0.11.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.9 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

edsnlp-0.11.1-cp311-cp311-macosx_11_0_arm64.whl (1.9 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

edsnlp-0.11.1-cp311-cp311-macosx_10_9_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

edsnlp-0.11.1-cp310-cp310-win_amd64.whl (1.9 MB view details)

Uploaded CPython 3.10 Windows x86-64

edsnlp-0.11.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

edsnlp-0.11.1-cp310-cp310-macosx_11_0_arm64.whl (1.9 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

edsnlp-0.11.1-cp310-cp310-macosx_10_9_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

edsnlp-0.11.1-cp39-cp39-win_amd64.whl (1.9 MB view details)

Uploaded CPython 3.9 Windows x86-64

edsnlp-0.11.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

edsnlp-0.11.1-cp39-cp39-macosx_11_0_arm64.whl (1.9 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

edsnlp-0.11.1-cp39-cp39-macosx_10_9_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

edsnlp-0.11.1-cp38-cp38-win_amd64.whl (1.9 MB view details)

Uploaded CPython 3.8 Windows x86-64

edsnlp-0.11.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.9 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

edsnlp-0.11.1-cp38-cp38-macosx_11_0_arm64.whl (1.9 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

edsnlp-0.11.1-cp38-cp38-macosx_10_9_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

edsnlp-0.11.1-cp37-cp37m-win_amd64.whl (1.9 MB view details)

Uploaded CPython 3.7m Windows x86-64

edsnlp-0.11.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

edsnlp-0.11.1-cp37-cp37m-macosx_10_9_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file edsnlp-0.11.1.tar.gz.

File metadata

  • Download URL: edsnlp-0.11.1.tar.gz
  • Upload date:
  • Size: 1.6 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.19

File hashes

Hashes for edsnlp-0.11.1.tar.gz
Algorithm Hash digest
SHA256 8ce062a83c190d67800e0a258026b264d9ef942980f881a22d69dbf4ce55f550
MD5 860537286421623f6f8e77edc865bf28
BLAKE2b-256 f26bb91a6d6ff6e58d0d6bff73892422006ed99e636ef2fb86a8aa1f37d94cbf

See more details on using hashes here.

File details

Details for the file edsnlp-0.11.1-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: edsnlp-0.11.1-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.19

File hashes

Hashes for edsnlp-0.11.1-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 c138758ca5c71ca3e77e8a9584c1ec50d08d392bf183489ea84358e084769267
MD5 c9c6c0c015ddfaeb583f38342769c473
BLAKE2b-256 072e4507298e5122703d23587f1df383b0c78bbb5fd1659a6b1841b14d787c09

See more details on using hashes here.

File details

Details for the file edsnlp-0.11.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.11.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8f8c4d6f1d06e65fdfa33e90128bc85e2523159215ec6b783b24c2d5693ffc2c
MD5 76796b22ac81b5524c2f02a9d3c12bfd
BLAKE2b-256 f18210db798ecba06a5c7e36fcd3b5dc32fe841fa13ad4ba8ada30070df8d0ef

See more details on using hashes here.

File details

Details for the file edsnlp-0.11.1-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for edsnlp-0.11.1-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 60880eaba2d131e0a93b6941e3dd918b452f0e13ebdc41cd10522984ac8ef94a
MD5 41285621b074dc7a7ca0a2cf1f39fe28
BLAKE2b-256 bc73935c9fcd09de1fa93c1ade51235015e31849a35e750321af149ea11f6c77

See more details on using hashes here.

File details

Details for the file edsnlp-0.11.1-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.11.1-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 81d1bc4320589148005189014dbe9da752bbb0a7c2866a6ee8acfd9accc61dff
MD5 2e51c6bbafd4b4344b7d34c6897646d8
BLAKE2b-256 40e7ec6866b49668c6f3156bf3d597fb5fcbc7f6d9a84de79e7bc24983cdc832

See more details on using hashes here.

File details

Details for the file edsnlp-0.11.1-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: edsnlp-0.11.1-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.19

File hashes

Hashes for edsnlp-0.11.1-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 6f9138e31ad3afeb1c2df0e8a42a7a1f96dbf1e47a824632a6e9f0c487e812ae
MD5 e8fd4f508e48d60b024a44f8eae99123
BLAKE2b-256 eea9da090ee7891adfb9817320711395d3f6a7e1d4e9892ff306c7edef0fee34

See more details on using hashes here.

File details

Details for the file edsnlp-0.11.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.11.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9591787bfd1a492e8f6b53fac389ba59c7e3827ca52d87c6d9603e4850a2f7d9
MD5 975fa977d7c36e4e45d26a8f8c219787
BLAKE2b-256 1800776348f4e1c7c24b717334d99a8d510dbe8edfe445306bad87a8b2cff4a9

See more details on using hashes here.

File details

Details for the file edsnlp-0.11.1-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for edsnlp-0.11.1-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 12ec54042c7a0164311ce90e68520c389680151f66020819516025265a5879e4
MD5 93435b26c65aa1b64e40db04b08b3706
BLAKE2b-256 7c518fa4c71a39b83921acd13392cfd73ded1af6c5201590d4135752d7a2edfc

See more details on using hashes here.

File details

Details for the file edsnlp-0.11.1-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.11.1-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 384ff471ff3eb2044e2dc4e866e104aefa7aaecf9b59fbe94b1de243c3a3e7f1
MD5 e4f80b69d359cef84e2b81be761400ec
BLAKE2b-256 f1237a55a28816bd37a503a5f8ab627c4a75dc0ceb82e319b48fb43297c0db87

See more details on using hashes here.

File details

Details for the file edsnlp-0.11.1-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: edsnlp-0.11.1-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.19

File hashes

Hashes for edsnlp-0.11.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 2206a04da846fa105f3e39af6ae646122c3679b10ac412406040277dec0e167e
MD5 dbc726160c7c0940635cf1d7709e1fde
BLAKE2b-256 364aca4dfbdbeba76a8b9c627c13e7d3d8aaa2046461dad7d1b21965d0048170

See more details on using hashes here.

File details

Details for the file edsnlp-0.11.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.11.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5bf7bc01e270635bf0423c8a84e40fba7ea52a8c419bb3d5abe4e25f3f984e62
MD5 58d85e2f0fc9caaa7c6b111e21231cdf
BLAKE2b-256 4c737fa9aea97a2dda07a118ea17f01a694ad6d33e14ff12fc648fabbad18de9

See more details on using hashes here.

File details

Details for the file edsnlp-0.11.1-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for edsnlp-0.11.1-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 6f611f525a512d962bc64030e8c28c6b4234e680928cd2b6ddfa7674b992ed69
MD5 8ccf6094b9d447d8cb6a6ddd7aaae2a7
BLAKE2b-256 e63adb5d51dbbd4fd7b44f5d170a45bccf226c0b7808db25c02a46cd33ca3cd0

See more details on using hashes here.

File details

Details for the file edsnlp-0.11.1-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.11.1-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 4fdd768347ff64d1c7674998c82cd59bc1689d5532fec2632c3ec1e5d814c329
MD5 21b581f9ffb399689b33f86c7866d4db
BLAKE2b-256 1407633603fc9d815efb3301f52ac872f0709fa6b0326544d29260b863d37e99

See more details on using hashes here.

File details

Details for the file edsnlp-0.11.1-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: edsnlp-0.11.1-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.19

File hashes

Hashes for edsnlp-0.11.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 ea926eab617ed6d37485ff0f4b835e98f5128bd3a23159d0b4069d5c47054be3
MD5 2fbf09e8561be4715697a64dd9d5d2ba
BLAKE2b-256 89b4062f89a18a0016f8a04c836f8e0b54d095c3bc04b09b36f6abdc238f1abc

See more details on using hashes here.

File details

Details for the file edsnlp-0.11.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.11.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9206864d9c562d84ac1fd4851db7391ac7a4ac45b8af230348def9a6f0b22ac5
MD5 b5f60cba98e39759165d9867cb7ac4ee
BLAKE2b-256 3f9dd8d606dbab3fe71a901b7395fd4fd978d53b114c52c37fea52142257eb2f

See more details on using hashes here.

File details

Details for the file edsnlp-0.11.1-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for edsnlp-0.11.1-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 7583c8cfd2339931ce9b4e73be1b25badc0bdc1774a88283ebe615ceb59c5bbc
MD5 41ba1e0bfd3acca388cc4ac195efeb53
BLAKE2b-256 3848353c99976a83bdc44958b7132437c26c969b8b94193d9994d53b1be0b019

See more details on using hashes here.

File details

Details for the file edsnlp-0.11.1-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.11.1-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 970968190fcab25ea63d050703b883309bd97c798355a811f4021f075e6c09d0
MD5 2846cf0c93ce09f8fa5bb4250a735901
BLAKE2b-256 87a3b996f0cf3aba2bc4457769c434487657dccf5c8b4b4345e06fa0f8c2cad8

See more details on using hashes here.

File details

Details for the file edsnlp-0.11.1-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: edsnlp-0.11.1-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.19

File hashes

Hashes for edsnlp-0.11.1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 e741240cb28673f4576532e8b86d944f1c6b794ca452f4cf6566ac10362601d6
MD5 fd1b30fba69d1e828f8ffd06060343e3
BLAKE2b-256 a6ce1b2705980a30144dd31de454f91bb441e1e02aec1d9d366cefd11a52566d

See more details on using hashes here.

File details

Details for the file edsnlp-0.11.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.11.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8012b5c559c4c206c862e0874cd0ce60b7531d1cfa35ff6b04c162c91af00de9
MD5 f2700ef4efe1199f45560331b9810fae
BLAKE2b-256 131b4ae68c25ab372b59c154c60eb1a409389588201199d664d3238ec22c97b8

See more details on using hashes here.

File details

Details for the file edsnlp-0.11.1-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for edsnlp-0.11.1-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 cb4eefbad7e637f9660256c658c2c4944b346956381ff59a78591862df21fece
MD5 e347c3c1179c98da39b39160c9a0b57e
BLAKE2b-256 4417d09cf5f9c56a74d6861058c3a9ce94a026f69e7a54ef5ef40b448a357e05

See more details on using hashes here.

File details

Details for the file edsnlp-0.11.1-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.11.1-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c32cae147f88e2b7022a64fe7b506a07b6f741ec86da60a55a5eb6ce3d05963e
MD5 248ce21ecdec9ae838bd8a8ae6dea42f
BLAKE2b-256 c53ebfbd9661c5fe7655194462d28da65fc347afb4a05f8d78abc9d5445557d9

See more details on using hashes here.

File details

Details for the file edsnlp-0.11.1-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: edsnlp-0.11.1-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.19

File hashes

Hashes for edsnlp-0.11.1-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 007b6af14887984d62df7f18b1e8114b5019b3cc9c414f29089ecba1a85de39e
MD5 e9de62877e4581a32329298d3ab4b2d6
BLAKE2b-256 4ab18cde70a9ae820eb301d051fd70397184b044d7c1c666caaf46100c747e3f

See more details on using hashes here.

File details

Details for the file edsnlp-0.11.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.11.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 047c202e155049c6bdfe0bdbb91e34784d645bd214fa455a2b74e11ddee73115
MD5 7ce4ab050689348d7f642fb0ca131419
BLAKE2b-256 46d03d8d5ea20403d6739ad618a0dfa14c9019af743c098c9ddb7462c612f70d

See more details on using hashes here.

File details

Details for the file edsnlp-0.11.1-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.11.1-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 e773a751fe008136c416b13f8055e3c5bddd53da11a33c4721ccdc2cbc1dbb9e
MD5 1c9815fdcd1ab4574a082c04dfad72f2
BLAKE2b-256 86ea28b19f5fd589a3f8cef180f349dfca848181a3d4e2fe3bbcd81d648483b2

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page