Skip to main content

Modular, fast NLP framework, compatible with Pytorch and spaCy, offering tailored support for French clinical notes.

Project description

Tests Documentation PyPI Demo Codecov DOI

EDS-NLP

EDS-NLP is a collaborative NLP framework that aims primarily at extracting information from French clinical notes. At its core, it is a collection of components or pipes, either rule-based functions or deep learning modules. These components are organized into a novel efficient and modular pipeline system, built for hybrid and multitask models. We use spaCy to represent documents and their annotations, and Pytorch as a deep-learning backend for trainable components.

EDS-NLP is versatile and can be used on any textual document. The rule-based components are fully compatible with spaCy's components, and vice versa. This library is a product of collaborative effort, and we encourage further contributions to enhance its capabilities.

Check out our interactive demo !

Features

Quick start

Installation

You can install EDS-NLP via pip. We recommend pinning the library version in your projects, or use a strict package manager like Poetry.

pip install edsnlp==0.11.2

or if you want to use the trainable components (using pytorch)

pip install "edsnlp[ml]==0.11.2"

A first pipeline

Once you've installed the library, let's begin with a very simple example that extracts mentions of COVID19 in a text, and detects whether they are negated.

import edsnlp, edsnlp.pipes as eds

nlp = edsnlp.blank("eds")

terms = dict(
    covid=["covid", "coronavirus"],
)

# Split the documents into sentences, this isneeded for negation detection
nlp.add_pipe(eds.sentences())
# Matcher component
nlp.add_pipe(eds.matcher(terms=terms))
# Negation detection (we also support spacy-like API !)
nlp.add_pipe("eds.negation")

# Process your text in one call !
doc = nlp("Le patient n'est pas atteint de covid")

doc.ents
# Out: (covid,)

doc.ents[0]._.negation
# Out: True

Documentation & Tutorials

Go to the documentation for more information.

Disclaimer

The performances of an extraction pipeline may depend on the population and documents that are considered.

Contributing to EDS-NLP

We welcome contributions ! Fork the project and propose a pull request. Take a look at the dedicated page for detail.

Citation

If you use EDS-NLP, please cite us as below.

@misc{edsnlp,
  author = {Wajsburt, Perceval and Petit-Jean, Thomas and Dura, Basile and Cohen, Ariel and Jean, Charline and Bey, Romain},
  doi    = {10.5281/zenodo.6424993},
  title  = {EDS-NLP: efficient information extraction from French clinical notes},
  url    = {https://aphp.github.io/edsnlp}
}

Acknowledgement

We would like to thank Assistance Publique – Hôpitaux de Paris, AP-HP Foundation and Inria for funding this project.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

edsnlp-0.11.2.tar.gz (1.6 MB view details)

Uploaded Source

Built Distributions

edsnlp-0.11.2-cp312-cp312-win_amd64.whl (1.9 MB view details)

Uploaded CPython 3.12 Windows x86-64

edsnlp-0.11.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.9 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

edsnlp-0.11.2-cp312-cp312-macosx_11_0_arm64.whl (1.9 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

edsnlp-0.11.2-cp312-cp312-macosx_10_9_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

edsnlp-0.11.2-cp311-cp311-win_amd64.whl (1.9 MB view details)

Uploaded CPython 3.11 Windows x86-64

edsnlp-0.11.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.9 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

edsnlp-0.11.2-cp311-cp311-macosx_11_0_arm64.whl (1.9 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

edsnlp-0.11.2-cp311-cp311-macosx_10_9_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

edsnlp-0.11.2-cp310-cp310-win_amd64.whl (1.9 MB view details)

Uploaded CPython 3.10 Windows x86-64

edsnlp-0.11.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

edsnlp-0.11.2-cp310-cp310-macosx_11_0_arm64.whl (1.9 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

edsnlp-0.11.2-cp310-cp310-macosx_10_9_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

edsnlp-0.11.2-cp39-cp39-win_amd64.whl (1.9 MB view details)

Uploaded CPython 3.9 Windows x86-64

edsnlp-0.11.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

edsnlp-0.11.2-cp39-cp39-macosx_11_0_arm64.whl (1.9 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

edsnlp-0.11.2-cp39-cp39-macosx_10_9_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

edsnlp-0.11.2-cp38-cp38-win_amd64.whl (1.9 MB view details)

Uploaded CPython 3.8 Windows x86-64

edsnlp-0.11.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.9 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

edsnlp-0.11.2-cp38-cp38-macosx_11_0_arm64.whl (1.9 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

edsnlp-0.11.2-cp38-cp38-macosx_10_9_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

edsnlp-0.11.2-cp37-cp37m-win_amd64.whl (1.9 MB view details)

Uploaded CPython 3.7m Windows x86-64

edsnlp-0.11.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

edsnlp-0.11.2-cp37-cp37m-macosx_10_9_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file edsnlp-0.11.2.tar.gz.

File metadata

  • Download URL: edsnlp-0.11.2.tar.gz
  • Upload date:
  • Size: 1.6 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.19

File hashes

Hashes for edsnlp-0.11.2.tar.gz
Algorithm Hash digest
SHA256 c46a6e94a9fb79d40a769abb6551d6801c1a5312ad205908e2221f6eb3f7c203
MD5 2dcf9ea0bb284383e8215cae46d52496
BLAKE2b-256 2bd5c92a9a026f40939b3cd19dcbdf8a5817e109ba011420f6d23857c6cda75e

See more details on using hashes here.

File details

Details for the file edsnlp-0.11.2-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: edsnlp-0.11.2-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.19

File hashes

Hashes for edsnlp-0.11.2-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 de0659b597934c94475b7c1507dc01b91d0aa68caf3b98eab80b7ca341d13c4a
MD5 8f41474230e98b6b4f1cd7ef1b4c3d7e
BLAKE2b-256 eed930082f764f29501ec137567269f8df45e46a00f345e507e54605904f6001

See more details on using hashes here.

File details

Details for the file edsnlp-0.11.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.11.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5fb190c46e3945845e23ff8b68c8a11f0b60a63f2fbbc95bfa2b3ffedd819d34
MD5 e472e0070ab0d90e69f46cf9aea0e4cf
BLAKE2b-256 8cf58554ebf7cd7c0e1aef610539999e7480f3fa1f1c0763a37640e3912672f4

See more details on using hashes here.

File details

Details for the file edsnlp-0.11.2-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for edsnlp-0.11.2-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 042441169b7af677b95d77a098edfaaf34e0e0cba2ebf9cc15f7a961206d1c45
MD5 b6da77abd8e65176dc4f13d842b4a914
BLAKE2b-256 5078d3cb15b58dad544f2e852907ba3452908fbebe399eba0dc796728221fc4b

See more details on using hashes here.

File details

Details for the file edsnlp-0.11.2-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.11.2-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 a994e74c54c899faa17c708dfc882c461fcffbeb4691e9a9c0802ca008525481
MD5 7078f1c955385d5315723c96b3d86dec
BLAKE2b-256 30dc2a98815124c9031cdda212644bd6a394e5ee1434c0c306fdc06ba2b22468

See more details on using hashes here.

File details

Details for the file edsnlp-0.11.2-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: edsnlp-0.11.2-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.19

File hashes

Hashes for edsnlp-0.11.2-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 74c02afb54b46e9fa59e8423763a0ea5936a3885b8caa957e64be288fa1fc7b7
MD5 333ddbb5059f3c5055006e2a04f946e2
BLAKE2b-256 0fa9ecb3217504490cb3ec8d6436f9eaefdf34f883a15f588784e75aebeb5c7a

See more details on using hashes here.

File details

Details for the file edsnlp-0.11.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.11.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a7cdcb0b8a52f18cda05365d9295a982d061f275894cdf508869573f8ad426a8
MD5 8a2c00aafaecd0313fcd88b366978b2f
BLAKE2b-256 9f2a4166e95e70d18b5f48fd705dc5fdb0b0d2df2920019b91b963346897f5a2

See more details on using hashes here.

File details

Details for the file edsnlp-0.11.2-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for edsnlp-0.11.2-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 65ad41d51383a2c631767042a9001b9ea4285acc6c449fd2e8793adb2cf34805
MD5 4e1a4134bf1a02916194e01883c9e479
BLAKE2b-256 a624c689e7ee8573e2cdd1dfa7c08a6cb60c2cd881af1f14347dad3a5a6d797b

See more details on using hashes here.

File details

Details for the file edsnlp-0.11.2-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.11.2-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 f1fc610ffd6739a63ac1e89f5e347c1eb7b3123b4a1de23f1f82f7d7e889d665
MD5 2dad66417c1220d25d5a7b5693167bd3
BLAKE2b-256 5ede6b5c823c6c0abcfe0a8867f187f222ed5442b569d09b7c297eed2d85d170

See more details on using hashes here.

File details

Details for the file edsnlp-0.11.2-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: edsnlp-0.11.2-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.19

File hashes

Hashes for edsnlp-0.11.2-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 694e2b53417e8804ca940756e16fc888d33cdd939eda466978525de01d256922
MD5 34f7a32773f02fc632d50833efba3057
BLAKE2b-256 42a06850cd3de7b50dbd5deecaf52d3308dc3b7aa1226c25c15de9a81e66533f

See more details on using hashes here.

File details

Details for the file edsnlp-0.11.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.11.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 aa5d1221a5fc042a23a8f94f89d44468a008b442d1b5be2c0b667be692380e84
MD5 d6325ebe29ff8d89681dedbc8c561039
BLAKE2b-256 64524e4a2f827768ee75191a54797c2a48c5a958ab9db57f63e9234fe5365b3e

See more details on using hashes here.

File details

Details for the file edsnlp-0.11.2-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for edsnlp-0.11.2-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 29d95dba7962d8431e6fbe9e303c5f1ae2b86e661460c85ff6f7ac2b1e6e969d
MD5 8ca354e66908feb9a2af8cbd10ba0614
BLAKE2b-256 a10375f6594720be891615ad2d7b812922656eda6c2e0ae442547b059a3ac062

See more details on using hashes here.

File details

Details for the file edsnlp-0.11.2-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.11.2-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 eccda945e0281a96b8edbcd5cb708c1cca7df4b1f58e9e8d435ffa988390914d
MD5 596cc09d16058cb22afdfeb921386f65
BLAKE2b-256 cf30e85a6399e5048d1b0cc4113106372d961d36876e1d904c5157db06250286

See more details on using hashes here.

File details

Details for the file edsnlp-0.11.2-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: edsnlp-0.11.2-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.19

File hashes

Hashes for edsnlp-0.11.2-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 0fd0fa116b02fac1ec3cacd82f4a06f72939a89894be4e22c0e251474f2eab36
MD5 9862cae9a860bb235959e76f37995d65
BLAKE2b-256 2c0856f5bb5f46acc6b3a816b0e51a609422aac4c096014b53c3aad1292521bf

See more details on using hashes here.

File details

Details for the file edsnlp-0.11.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.11.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 19dfb832ea47a692a6c6722c51cc4486fd491330d523332a1dd2d40d6fbafdb6
MD5 a52a32f883ea348e8a8c58726571c5c6
BLAKE2b-256 f785f3e73b454d4c9a43b6cb7003804e7d2100978641ba37927dc685dd7ebac6

See more details on using hashes here.

File details

Details for the file edsnlp-0.11.2-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for edsnlp-0.11.2-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 3966b9e2629397cb17e5877fedbc062ee56169c45b610d1b38fc1898a1cdbc68
MD5 76fb172b7461dd2333538c80f1de6393
BLAKE2b-256 e304e590f142fe0f175f063373e4617b8a03de10b0909b55d6faaf760ee1311c

See more details on using hashes here.

File details

Details for the file edsnlp-0.11.2-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.11.2-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 84ead3263f9bfb70f5584738d6c28ea6e7a4a76ac244dc43bd397b08fe118d8b
MD5 c1d04620d740c2032e39ddde1bd4fc49
BLAKE2b-256 129d2bf0eb890df6642745979f65888543a43da58d9f0308288af0b4b028bdb8

See more details on using hashes here.

File details

Details for the file edsnlp-0.11.2-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: edsnlp-0.11.2-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.19

File hashes

Hashes for edsnlp-0.11.2-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 2e9a0f8352c13fa564e7b8f68f8d3bd54a0628b3523c867849664a9995396ec4
MD5 d4aab684201efa7fedf3805498a06cd3
BLAKE2b-256 268c0aaeee66d565f5125d94488b7f19596c77f157c38c15fcb1572973b2a8f5

See more details on using hashes here.

File details

Details for the file edsnlp-0.11.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.11.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1d97b736e7e88327dec1ef5769af3d9418ae3b1e1a89efd4f2b4ef6e431d61a0
MD5 f3cb65ef0c9340647619240518873079
BLAKE2b-256 30651ae940434b8f96f2a868f75a8ce7a262e06f206053af977d548c44568373

See more details on using hashes here.

File details

Details for the file edsnlp-0.11.2-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for edsnlp-0.11.2-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 ebd754814b5d1823c509c8f9e3fcefbc8364bcfd829df568cdca26a4c8280d4d
MD5 9b00321cb498b03aa7c1c500f2c5db8d
BLAKE2b-256 af8be988774ec678bf78507be8054319aa3f0e0aae900b1b3f76f39a2de3da58

See more details on using hashes here.

File details

Details for the file edsnlp-0.11.2-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.11.2-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 f09cc41f3e7611b29a5b86ca7a84e60a7d70c803bb45582f69abbc5a54bd591c
MD5 c7a613865563b2ba9b06583d6828ac20
BLAKE2b-256 8581ec8a04ceb5f04f55d93d78624a4c744a5128a469e072a5016b2050c4721a

See more details on using hashes here.

File details

Details for the file edsnlp-0.11.2-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: edsnlp-0.11.2-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.19

File hashes

Hashes for edsnlp-0.11.2-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 d489dba2f32419bf33a9472a80116828965377f9eaf970bc491eec1412e7fa43
MD5 2017d24466e8057c39fd5f1a839bd28f
BLAKE2b-256 b7f17c4c73671c58be275e25a99c3b716830399b57a999be528ade2c6c92b612

See more details on using hashes here.

File details

Details for the file edsnlp-0.11.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.11.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1cc7b9cfe5c07702ecd4cb6a80569921f6a7cda855b5a628e4f73a4efa98405f
MD5 f2e968a954b3d58e81c39b1053c4441f
BLAKE2b-256 e3ad7b0e4b9e57518b53117683689480540b30db4ef5ffb0ea0424dea34fef4f

See more details on using hashes here.

File details

Details for the file edsnlp-0.11.2-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.11.2-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 a609a53f04faedb16193b632eae6207ababb18c407a08f91a72dd927cbaa53c7
MD5 b1cb0250aecb0596de99634121bca39b
BLAKE2b-256 ef58dbdcc5e943157d7b1ea037082bf4fd72538ece59bf31817a478f6a4b259e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page