Skip to main content

Modular, fast NLP framework, compatible with Pytorch and spaCy, offering tailored support for French clinical notes.

Project description

Tests Documentation PyPI Demo Coverage DOI

EDS-NLP

EDS-NLP is a collaborative NLP framework that aims primarily at extracting information from French clinical notes. At its core, it is a collection of components or pipes, either rule-based functions or deep learning modules. These components are organized into a novel efficient and modular pipeline system, built for hybrid and multitask models. We use spaCy to represent documents and their annotations, and Pytorch as a deep-learning backend for trainable components.

EDS-NLP is versatile and can be used on any textual document. The rule-based components are fully compatible with spaCy's components, and vice versa. This library is a product of collaborative effort, and we encourage further contributions to enhance its capabilities.

Check out our interactive demo !

Features

Quick start

Installation

You can install EDS-NLP via pip. We recommend pinning the library version in your projects, or use a strict package manager like Poetry.

pip install edsnlp==0.12.0

or if you want to use the trainable components (using pytorch)

pip install "edsnlp[ml]==0.12.0"

A first pipeline

Once you've installed the library, let's begin with a very simple example that extracts mentions of COVID19 in a text, and detects whether they are negated.

import edsnlp, edsnlp.pipes as eds

nlp = edsnlp.blank("eds")

terms = dict(
    covid=["covid", "coronavirus"],
)

# Split the documents into sentences, this isneeded for negation detection
nlp.add_pipe(eds.sentences())
# Matcher component
nlp.add_pipe(eds.matcher(terms=terms))
# Negation detection (we also support spacy-like API !)
nlp.add_pipe("eds.negation")

# Process your text in one call !
doc = nlp("Le patient n'est pas atteint de covid")

doc.ents
# Out: (covid,)

doc.ents[0]._.negation
# Out: True

Documentation & Tutorials

Go to the documentation for more information.

Disclaimer

The performances of an extraction pipeline may depend on the population and documents that are considered.

Contributing to EDS-NLP

We welcome contributions ! Fork the project and propose a pull request. Take a look at the dedicated page for detail.

Citation

If you use EDS-NLP, please cite us as below.

@misc{edsnlp,
  author = {Wajsburt, Perceval and Petit-Jean, Thomas and Dura, Basile and Cohen, Ariel and Jean, Charline and Bey, Romain},
  doi    = {10.5281/zenodo.6424993},
  title  = {EDS-NLP: efficient information extraction from French clinical notes},
  url    = {https://aphp.github.io/edsnlp}
}

Acknowledgement

We would like to thank Assistance Publique – Hôpitaux de Paris, AP-HP Foundation and Inria for funding this project.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

edsnlp-0.12.0.tar.gz (1.6 MB view details)

Uploaded Source

Built Distributions

edsnlp-0.12.0-cp312-cp312-win_amd64.whl (1.9 MB view details)

Uploaded CPython 3.12 Windows x86-64

edsnlp-0.12.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.9 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

edsnlp-0.12.0-cp312-cp312-macosx_11_0_arm64.whl (2.0 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

edsnlp-0.12.0-cp312-cp312-macosx_10_9_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

edsnlp-0.12.0-cp311-cp311-win_amd64.whl (1.9 MB view details)

Uploaded CPython 3.11 Windows x86-64

edsnlp-0.12.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.9 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

edsnlp-0.12.0-cp311-cp311-macosx_11_0_arm64.whl (2.0 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

edsnlp-0.12.0-cp311-cp311-macosx_10_9_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

edsnlp-0.12.0-cp310-cp310-win_amd64.whl (1.9 MB view details)

Uploaded CPython 3.10 Windows x86-64

edsnlp-0.12.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

edsnlp-0.12.0-cp310-cp310-macosx_11_0_arm64.whl (2.0 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

edsnlp-0.12.0-cp310-cp310-macosx_10_9_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

edsnlp-0.12.0-cp39-cp39-win_amd64.whl (1.9 MB view details)

Uploaded CPython 3.9 Windows x86-64

edsnlp-0.12.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

edsnlp-0.12.0-cp39-cp39-macosx_11_0_arm64.whl (2.0 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

edsnlp-0.12.0-cp39-cp39-macosx_10_9_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

edsnlp-0.12.0-cp38-cp38-win_amd64.whl (1.9 MB view details)

Uploaded CPython 3.8 Windows x86-64

edsnlp-0.12.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.9 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

edsnlp-0.12.0-cp38-cp38-macosx_11_0_arm64.whl (2.0 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

edsnlp-0.12.0-cp38-cp38-macosx_10_9_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

edsnlp-0.12.0-cp37-cp37m-win_amd64.whl (1.9 MB view details)

Uploaded CPython 3.7m Windows x86-64

edsnlp-0.12.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

edsnlp-0.12.0-cp37-cp37m-macosx_10_9_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file edsnlp-0.12.0.tar.gz.

File metadata

  • Download URL: edsnlp-0.12.0.tar.gz
  • Upload date:
  • Size: 1.6 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.9.19

File hashes

Hashes for edsnlp-0.12.0.tar.gz
Algorithm Hash digest
SHA256 7bc6e423cd4eda59011a4934fc2ccdfc5c9ffbd10b8bde0091386693180634ef
MD5 5abfb13f78e6506685b385afdcb93337
BLAKE2b-256 2750f86e8a0f2292ebddabcf4276ad89d523cd6151923157058cbdc973ddfd12

See more details on using hashes here.

File details

Details for the file edsnlp-0.12.0-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: edsnlp-0.12.0-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.9.19

File hashes

Hashes for edsnlp-0.12.0-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 3607b96f676e10bfababb207cc7a75c137d2e5508d74212f69530f8c2d4c50e3
MD5 96038af5f1691458b293d4f742099809
BLAKE2b-256 ae61d2d1dd0116f91295228432b68d26a5f664b02083a721f7f260a0fda5d3e3

See more details on using hashes here.

File details

Details for the file edsnlp-0.12.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.12.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4a1f959b11aa4b19b6c38a62720af67baca6a8534645df0bd2c5cf91e4cd9d4b
MD5 353e6ca48f6665a33ec19060a36037da
BLAKE2b-256 0d72d9bff96e593d0a51f24972b0c1df589172c817bd68f238850ffb1a5f85a6

See more details on using hashes here.

File details

Details for the file edsnlp-0.12.0-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for edsnlp-0.12.0-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 f53578f641d503e92dd4e64e3eb92987a6f406563ee883ba30658ef418ed0b6e
MD5 9bbb2f4c76d8a0d431913181bea52b3f
BLAKE2b-256 00e059d862d59765cdefe9bfa867f275eba800d592cf2f2a5b569c6fb68fec0e

See more details on using hashes here.

File details

Details for the file edsnlp-0.12.0-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.12.0-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 0b4b4dd72edf883ee6ba29a54a687392932723bcc6ee7ddd0a0282d25158496a
MD5 6ce908512dfe7a401bf5adb46ba2c515
BLAKE2b-256 41cf40d145f65aaee1769bdd5e23192e55d3f7cf21a04c675e75f2a271a7f677

See more details on using hashes here.

File details

Details for the file edsnlp-0.12.0-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: edsnlp-0.12.0-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.9.19

File hashes

Hashes for edsnlp-0.12.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 5bf7fa63a2eebf12f7ce4e2d619a678faf99f746b701e38516182b891b019a81
MD5 747ae713032809ebc8df4e451e7cb60f
BLAKE2b-256 f1e91127b46d5edb8dbd5d4656cb89c2263c1414bd66576eb0a8a154ffc17936

See more details on using hashes here.

File details

Details for the file edsnlp-0.12.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.12.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 80814ecaeee4a1af650bc56d0c23bbd1cbc2150acd5d1010a3a910770a142fcd
MD5 95034b95da70232610e62486516ce4fd
BLAKE2b-256 eb176b697ff4cc8151024981e56408ea248f87fc25cd1fad73b0eb7ddd5adc6a

See more details on using hashes here.

File details

Details for the file edsnlp-0.12.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for edsnlp-0.12.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 9d78f62427ff23930648b2ab046e3f84e4f632428a0faaa7b01f1c320d12eceb
MD5 e51dcb210688060f57cf49c4db72bcbf
BLAKE2b-256 74b36fa7721cf3b1d635c04afc394f14b3adb4f5427e6cf33ec56029f1fabee6

See more details on using hashes here.

File details

Details for the file edsnlp-0.12.0-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.12.0-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c045d00edf19c9780c6d74517fad6a0aee9880bc5b3a7575c85d92dbaa10aa2e
MD5 240f463776b5e914fbedba9081652930
BLAKE2b-256 12b5b417cf5c2a66c49df8ffc8eca364acde29dc8761bdb903e4356c02fc9c91

See more details on using hashes here.

File details

Details for the file edsnlp-0.12.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: edsnlp-0.12.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.9.19

File hashes

Hashes for edsnlp-0.12.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 9452939edb461f1c501c769cd6d28ce4694ce3ef2ae37b02aa8d5a05c0b7ab95
MD5 de08d23ccf39db00a0dac1127ef3c138
BLAKE2b-256 3bab26cb43a8bce203faf93d2223a2e334baa437b3924bf89fbcc03ef5fce112

See more details on using hashes here.

File details

Details for the file edsnlp-0.12.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.12.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 abf5f1f7d14071377dfe37a167a06fc086b521d01727ad155c7e210d912d2774
MD5 e02fc0dd0ca944d42865a025ccaeaf85
BLAKE2b-256 2969cee200f03e4d99a27b56ef999d684924ef0b85540e0ad0e3b16acd3f648c

See more details on using hashes here.

File details

Details for the file edsnlp-0.12.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for edsnlp-0.12.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 fabad77ff7cd5c30596bbaa60f4716671765bd2519f9c5d44bf05157de450358
MD5 4f1a94b9b2a870ffa27b74abe44970d4
BLAKE2b-256 50043246d40efca71b98746f5b42ae087bd654a6e4ba7753d9c2806b97d3a46e

See more details on using hashes here.

File details

Details for the file edsnlp-0.12.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.12.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 82f5d6655fb15f900c61d4dc94a4fb05565f4712ad7b3e0c6b8f5ad24459517a
MD5 8fa49eafaacf29a247aaf96ac831a3cd
BLAKE2b-256 6cded345bb46127affec1c09bf13d2e536a39e31b41ed6aff0b2082aee1fbf06

See more details on using hashes here.

File details

Details for the file edsnlp-0.12.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: edsnlp-0.12.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.9.19

File hashes

Hashes for edsnlp-0.12.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 0fd612fd689819bb8e470cd70274f12d2c3e54899a9127243c6d72c69e4c50f2
MD5 d66af996aad06d1c057dca15faedd260
BLAKE2b-256 4a397dcb288de3480c75ad3e6f481c10dd7b1e2164d3a2d571233e8dd4e7e061

See more details on using hashes here.

File details

Details for the file edsnlp-0.12.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.12.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f3913fbeeb1db04b87b475b762636add60c87065c2465a106071fa22aa6df0dc
MD5 06c17b05693e36bed053a5de7ae0097b
BLAKE2b-256 9d2579ba87ad32efda2f95ae64b19401cbbd8ec493d92868031a064d785ca202

See more details on using hashes here.

File details

Details for the file edsnlp-0.12.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for edsnlp-0.12.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 b277f546f7b7538a92b0641fc25c4e64bbb906284a6c5e91b608990bc632f5f1
MD5 aabf4eba74ea34c32dd5738b8fda9133
BLAKE2b-256 14ec09d4daa9db7df80e215dcea6e94291d19919721a12d9b9a8aabf87420034

See more details on using hashes here.

File details

Details for the file edsnlp-0.12.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.12.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 7c8fa477fe91726cb998f57013bfd3baa5628425527beb13c554c92f33337ec2
MD5 84a07707a660ca11efacbc50e7b27516
BLAKE2b-256 24424eebe57df5cad5d0e3cc935fbf5a9679900c84cdfd50582df70c27e4331d

See more details on using hashes here.

File details

Details for the file edsnlp-0.12.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: edsnlp-0.12.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.9.19

File hashes

Hashes for edsnlp-0.12.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 3bb9aacd36daf55f5583411db89f054f142ec78c9d565570925859ba843b9287
MD5 a05bc0e48411da0b5aa90ea7590eca2f
BLAKE2b-256 326cebf9f4f66c4829e72ed7ee4e2322528052018a1326729803cd129d46644f

See more details on using hashes here.

File details

Details for the file edsnlp-0.12.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.12.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 937b27e331282fd04581414863c979a2664304f570993c15207f55357159f06c
MD5 e781862d29a4f1da46921ea6a88d4b88
BLAKE2b-256 9a6c35cb116679003708bdaf890c4195aa24e29ce74097168e833ed95787fe20

See more details on using hashes here.

File details

Details for the file edsnlp-0.12.0-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for edsnlp-0.12.0-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 fe1a459a8bafeccc522b5ea8486423b7ca4949a9e0d8eb4d8f7d85fdbcea3cee
MD5 3a07cfaebc381fc5fb466f4be925436e
BLAKE2b-256 df5c5cbc0b1fe4bcdb816fdece6d39a8eb20529e46101cd39cdba39b06e905a7

See more details on using hashes here.

File details

Details for the file edsnlp-0.12.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.12.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 3e49729c64c1248b1d61d2ae3644281dbc05fe9d4e386c248cb41b72e4cc0fc6
MD5 65b53965ceb479e9ddb3144bb7d84d20
BLAKE2b-256 cafa5c2ccb94b3f95c6d3a205a0ad7aae856983e58fb753732ec54d81cf89b4f

See more details on using hashes here.

File details

Details for the file edsnlp-0.12.0-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: edsnlp-0.12.0-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.9.19

File hashes

Hashes for edsnlp-0.12.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 cf7eaf63fff2768263335203305098b830cdf6513f954e2055a9c1deaf504a54
MD5 4fcd8a6ef5a6e4c0ec7273f06a0511ea
BLAKE2b-256 25def70a66b2a9a566f82e20b470a71772ed3fd4fc517efa88d84bf6bb9a095f

See more details on using hashes here.

File details

Details for the file edsnlp-0.12.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.12.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ce812b86d7a28f376265d9334cc9787246f5a460da546068a57be2afa844ee17
MD5 51f39522998d5e68d9c9b80d92a51ead
BLAKE2b-256 5c3ae6d67377f23f54a0e7d741b8ba3f9dd56b96a28a072988fb5d43e35e3894

See more details on using hashes here.

File details

Details for the file edsnlp-0.12.0-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.12.0-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 bf5388147cf1d6a62270a6c5eb19056965a1d7bcfe32fe3c08ed286b7ed1b983
MD5 d3ccc204fc48e0dc46c6553a8745290c
BLAKE2b-256 f7007fe263c13c5391482e29020845a226f145e59f08f94297f088a9748e73cd

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page