Skip to main content

Modular, fast NLP framework, compatible with Pytorch and spaCy, offering tailored support for French clinical notes.

Project description

Tests Documentation PyPI Demo Coverage DOI

EDS-NLP

EDS-NLP is a collaborative NLP framework that aims primarily at extracting information from French clinical notes. At its core, it is a collection of components or pipes, either rule-based functions or deep learning modules. These components are organized into a novel efficient and modular pipeline system, built for hybrid and multitask models. We use spaCy to represent documents and their annotations, and Pytorch as a deep-learning backend for trainable components.

EDS-NLP is versatile and can be used on any textual document. The rule-based components are fully compatible with spaCy's components, and vice versa. This library is a product of collaborative effort, and we encourage further contributions to enhance its capabilities.

Check out our interactive demo !

Features

Quick start

Installation

You can install EDS-NLP via pip. We recommend pinning the library version in your projects, or use a strict package manager like Poetry.

pip install edsnlp==0.12.1

or if you want to use the trainable components (using pytorch)

pip install "edsnlp[ml]==0.12.1"

A first pipeline

Once you've installed the library, let's begin with a very simple example that extracts mentions of COVID19 in a text, and detects whether they are negated.

import edsnlp, edsnlp.pipes as eds

nlp = edsnlp.blank("eds")

terms = dict(
    covid=["covid", "coronavirus"],
)

# Split the documents into sentences, this isneeded for negation detection
nlp.add_pipe(eds.sentences())
# Matcher component
nlp.add_pipe(eds.matcher(terms=terms))
# Negation detection (we also support spacy-like API !)
nlp.add_pipe("eds.negation")

# Process your text in one call !
doc = nlp("Le patient n'est pas atteint de covid")

doc.ents
# Out: (covid,)

doc.ents[0]._.negation
# Out: True

Documentation & Tutorials

Go to the documentation for more information.

Disclaimer

The performances of an extraction pipeline may depend on the population and documents that are considered.

Contributing to EDS-NLP

We welcome contributions ! Fork the project and propose a pull request. Take a look at the dedicated page for detail.

Citation

If you use EDS-NLP, please cite us as below.

@misc{edsnlp,
  author = {Wajsburt, Perceval and Petit-Jean, Thomas and Dura, Basile and Cohen, Ariel and Jean, Charline and Bey, Romain},
  doi    = {10.5281/zenodo.6424993},
  title  = {EDS-NLP: efficient information extraction from French clinical notes},
  url    = {https://aphp.github.io/edsnlp}
}

Acknowledgement

We would like to thank Assistance Publique – Hôpitaux de Paris, AP-HP Foundation and Inria for funding this project.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

edsnlp-0.12.1.tar.gz (1.6 MB view details)

Uploaded Source

Built Distributions

edsnlp-0.12.1-cp312-cp312-win_amd64.whl (1.9 MB view details)

Uploaded CPython 3.12 Windows x86-64

edsnlp-0.12.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.9 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

edsnlp-0.12.1-cp312-cp312-macosx_11_0_arm64.whl (2.0 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

edsnlp-0.12.1-cp312-cp312-macosx_10_9_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

edsnlp-0.12.1-cp311-cp311-win_amd64.whl (1.9 MB view details)

Uploaded CPython 3.11 Windows x86-64

edsnlp-0.12.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.9 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

edsnlp-0.12.1-cp311-cp311-macosx_11_0_arm64.whl (2.0 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

edsnlp-0.12.1-cp311-cp311-macosx_10_9_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

edsnlp-0.12.1-cp310-cp310-win_amd64.whl (1.9 MB view details)

Uploaded CPython 3.10 Windows x86-64

edsnlp-0.12.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

edsnlp-0.12.1-cp310-cp310-macosx_11_0_arm64.whl (2.0 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

edsnlp-0.12.1-cp310-cp310-macosx_10_9_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

edsnlp-0.12.1-cp39-cp39-win_amd64.whl (1.9 MB view details)

Uploaded CPython 3.9 Windows x86-64

edsnlp-0.12.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

edsnlp-0.12.1-cp39-cp39-macosx_11_0_arm64.whl (2.0 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

edsnlp-0.12.1-cp39-cp39-macosx_10_9_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

edsnlp-0.12.1-cp38-cp38-win_amd64.whl (1.9 MB view details)

Uploaded CPython 3.8 Windows x86-64

edsnlp-0.12.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.9 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

edsnlp-0.12.1-cp38-cp38-macosx_11_0_arm64.whl (2.0 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

edsnlp-0.12.1-cp38-cp38-macosx_10_9_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

edsnlp-0.12.1-cp37-cp37m-win_amd64.whl (1.9 MB view details)

Uploaded CPython 3.7m Windows x86-64

edsnlp-0.12.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

edsnlp-0.12.1-cp37-cp37m-macosx_10_9_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file edsnlp-0.12.1.tar.gz.

File metadata

  • Download URL: edsnlp-0.12.1.tar.gz
  • Upload date:
  • Size: 1.6 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.9.19

File hashes

Hashes for edsnlp-0.12.1.tar.gz
Algorithm Hash digest
SHA256 9fbb456f662ae579d92adcef6e2eaaa8c53d82f44a0ffcf1fc5563a05ff5e741
MD5 dfe75a15d8f845be2a8fac5ddcfea855
BLAKE2b-256 65348795a20e6e1da36cd92e37545c629f39c5df4b5745794a5eb4c01ecd8a41

See more details on using hashes here.

File details

Details for the file edsnlp-0.12.1-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: edsnlp-0.12.1-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.9.19

File hashes

Hashes for edsnlp-0.12.1-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 eec141548c7cfcd182bf9524a40e1c2c7cad6c09b3421ae792f96174ceb27a35
MD5 3da1078fdf3c4a06fffbea77478dd302
BLAKE2b-256 e09d3ad43d6c7626250f9fc5e25031346e42e589978b28c13bb928f527d7722c

See more details on using hashes here.

File details

Details for the file edsnlp-0.12.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.12.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 050a242b6cd780924e6e36e64ce6259da4bf5033432fba077c01b73ccddd9fc6
MD5 10c19b70c089e0a54fb55f5f718ee907
BLAKE2b-256 b43bb9d910db53437366e418716bc1ebddaaad80dc145d85a1997263546a52bd

See more details on using hashes here.

File details

Details for the file edsnlp-0.12.1-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for edsnlp-0.12.1-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 39ea1e1b12bd86c50a7069a3ee5884d4e7416fb89afadfbbf5b585227b798eb6
MD5 bd70267da35484ae807a8b01f1dd6752
BLAKE2b-256 c7103e8a98604966d292d2ebc5ee510abd20fb1ea9d912e227b1395caf7dbaed

See more details on using hashes here.

File details

Details for the file edsnlp-0.12.1-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.12.1-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d36bb805c42bdc606478cabfe6b68c96c990fca0227a0a18462bb30b7335a93d
MD5 46043f7660f2f5b64492f41d34d308bf
BLAKE2b-256 d32a7b1e4fdb97b9a1085a8404a286e0e95f06c3b01223305b2ed05bee21d3ee

See more details on using hashes here.

File details

Details for the file edsnlp-0.12.1-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: edsnlp-0.12.1-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.9.19

File hashes

Hashes for edsnlp-0.12.1-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 4ba74f7e26f9c35682e84ca90c5ee8589ba14bfb7dfcc2bcbbbad37f9d3b0478
MD5 b91851635511bf71027ac1801f4ac5f6
BLAKE2b-256 375115740a9049b308ebb3014d4e1869acb15545a7c1c9eb026b9d18a03376b8

See more details on using hashes here.

File details

Details for the file edsnlp-0.12.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.12.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 86b1dc0ecebb18c986b09f815b78683ce76b9e4675bf51c60bd7c283dab9a314
MD5 5ebd3bc4262b72bef45b5e20a32734bb
BLAKE2b-256 278020f19749059636d05d9a1c297ef2fee3f2f3b5ef90fa0f6d020c64792043

See more details on using hashes here.

File details

Details for the file edsnlp-0.12.1-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for edsnlp-0.12.1-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 634fd21ffe566c8a3c5c10b16ff3325c0b66a24ca2265ab3b4c982f9bd94101d
MD5 b28d248951277db6b0806b77baed858d
BLAKE2b-256 b0252ba6d05e078328137cfa063bb5a6382ab4b4365e595212b04df487e4dbb3

See more details on using hashes here.

File details

Details for the file edsnlp-0.12.1-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.12.1-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 0104fc5a497e8542d39f0b79da2757451d6452233b863560c32ea5ec3e5aeb63
MD5 c251f4ea55b51890748dd3ad3d6fbf31
BLAKE2b-256 176f91158d10a6dfe3229f53da13747e57bcf8dc59912912d049a5447253ca93

See more details on using hashes here.

File details

Details for the file edsnlp-0.12.1-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: edsnlp-0.12.1-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.9.19

File hashes

Hashes for edsnlp-0.12.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 5c8de470e492539deb4cad28a89a4dc1048dfb661e7e0612c8726ae1e866622e
MD5 b80eb4978933425783abc6aece72f8a1
BLAKE2b-256 1c1afb1058506742858c746f9ecdab7131e81ca1cf4a5fba512e26ffd2747514

See more details on using hashes here.

File details

Details for the file edsnlp-0.12.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.12.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f26974d230e07093096883aff801a5d77d7ea3aae9ec05877d3dd8b471be94c0
MD5 15ad92eaa47813f340adc63af70e3bef
BLAKE2b-256 2bb4dfbad534689ef4a30053272d9735ff5901379aaf03e6de5af53e27cc7a07

See more details on using hashes here.

File details

Details for the file edsnlp-0.12.1-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for edsnlp-0.12.1-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 e45a0fd771e076b59250477785a8a8e7a17e427e7254af248f911b10f634ef46
MD5 ab3c7cc32a24fd4d6021b51fab160b3a
BLAKE2b-256 4a3913b3dfda9880c7db7761e676014d3a996cadec6557e688dacd77378ab338

See more details on using hashes here.

File details

Details for the file edsnlp-0.12.1-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.12.1-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 1e27bec231cf4ad2874cb30dcdd9697cbcd8467f46dcd1a5a7562e903f07872a
MD5 9a9fd20435dd4c0f23392dda79c7b14f
BLAKE2b-256 2a4f15fe133683f3cf7a94c42d2e7ef7caa84c397b243d1d660a09759753167c

See more details on using hashes here.

File details

Details for the file edsnlp-0.12.1-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: edsnlp-0.12.1-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.9.19

File hashes

Hashes for edsnlp-0.12.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 fc93fefc45e1f9acfb9373f5783dda7b891f2365322e2fe7b34cb725607a3708
MD5 72fbad2cd6f1637593ff21accfd192ec
BLAKE2b-256 b5ea3ff8325ae0435756db03e9305c1a4b832544344401eb7e83ec6bb403b3b9

See more details on using hashes here.

File details

Details for the file edsnlp-0.12.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.12.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 33df29f0084c14c70b284169914a7355fb69c01516a1baa4365158a66373c468
MD5 389c007f8fb054a9e3425ab4c3676ffe
BLAKE2b-256 5dc2f9407a4aea8fe9a6bac3f6a34174be542ca53bda4253ab95650019d4c6a2

See more details on using hashes here.

File details

Details for the file edsnlp-0.12.1-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for edsnlp-0.12.1-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 cd786b9eb409e2a3e5db95f5cac4cdc8faa6fc65f83aaf412028bbc3bde7a180
MD5 b9fd3a45fb5dceec8e667959db4a0698
BLAKE2b-256 445afc990b7a54720cbb3339fbf73a9310884b26412a01e93174b798685b859c

See more details on using hashes here.

File details

Details for the file edsnlp-0.12.1-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.12.1-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 2d5dd9820385e1b1ffae149d66041a1a8f34b95808bc5ad366c6ddf6e2b177ad
MD5 07a4e667718fe16ecfb3d162768e713a
BLAKE2b-256 c6db4f00586d132606d23a251c411343da0ef2d947ec8fa5125af0915fcb1d1b

See more details on using hashes here.

File details

Details for the file edsnlp-0.12.1-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: edsnlp-0.12.1-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.9.19

File hashes

Hashes for edsnlp-0.12.1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 26c16682d623c5a69966b786d284b7394ad462faf049e21c9afa5ab736348ffe
MD5 ac0df788eae959a61597012d65047651
BLAKE2b-256 4e682dfd72d88f23e3419b983c38d347437b2f7e1bd5c8af45b7e6075ad020bf

See more details on using hashes here.

File details

Details for the file edsnlp-0.12.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.12.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f17b682ff8907bac45c65b68e985c8cb4e4ebad68566fb58123b1fda91d4451c
MD5 46c37a3cced05bf9cf8c4dd2b6d5210b
BLAKE2b-256 a94a120b027764706ca8779f766ba3d27fafb801830a600c54e8c2608d2066da

See more details on using hashes here.

File details

Details for the file edsnlp-0.12.1-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for edsnlp-0.12.1-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 b8d4e64126bea2f9076cd1cf7e213bcf510f72fa85cc221493a546756f92bde2
MD5 84ff083f2b514524eba0de47b5c419af
BLAKE2b-256 b63d515cacab0d21a6fd8401e1f9907da9fe9283b0812b7e6f18fb14ae44d440

See more details on using hashes here.

File details

Details for the file edsnlp-0.12.1-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.12.1-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 e5d2e348e182bb65260493cc56909535f3ad8c7786ed2cb698002d1fc971f15b
MD5 0bea3df518e1d06733c8f00ac62e891b
BLAKE2b-256 64c7f81f9ef8a9bdcf2228dbf5a07ed24bd1f573174cd6ab8f23b8e0ddb1e99b

See more details on using hashes here.

File details

Details for the file edsnlp-0.12.1-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: edsnlp-0.12.1-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.9.19

File hashes

Hashes for edsnlp-0.12.1-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 650dbe88ab69c3dd97260dee3993dfd1db3ded7dc04af2d0bac025c195582943
MD5 695380a02e679be81435ef96f7c609af
BLAKE2b-256 cc3c9be800c94db51918fa9eac2f30455b0b0b876a30a444b5cbe318bb3ff0b6

See more details on using hashes here.

File details

Details for the file edsnlp-0.12.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.12.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 fdc59abcaa60ddc737d834b973ca641393934d1bd044e8674fbac6c1c7b448bd
MD5 7c336a1514c06906204c1c9b18d43dc0
BLAKE2b-256 c1a09dd1dc11cd536b8c736592cff70ce84e89afc7e8d48efbdb7bf41daaf900

See more details on using hashes here.

File details

Details for the file edsnlp-0.12.1-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.12.1-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 f98086d1b382c46cd1aa3bef525422cfd81d976e7e8521eb0695bedf4f6d5b64
MD5 263610b88f0027b7d0b0af9ae0cd4349
BLAKE2b-256 bbef472efdbbbf394f4dbf8e99f7d2e2cd27e168727aca832bfe0eaaa0a5be68

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page