Skip to main content

Modular, fast NLP framework, compatible with Pytorch and spaCy, offering tailored support for French clinical notes.

Project description

Tests Documentation PyPI Demo Coverage DOI

EDS-NLP

EDS-NLP is a collaborative NLP framework that aims primarily at extracting information from French clinical notes. At its core, it is a collection of components or pipes, either rule-based functions or deep learning modules. These components are organized into a novel efficient and modular pipeline system, built for hybrid and multitask models. We use spaCy to represent documents and their annotations, and Pytorch as a deep-learning backend for trainable components.

EDS-NLP is versatile and can be used on any textual document. The rule-based components are fully compatible with spaCy's components, and vice versa. This library is a product of collaborative effort, and we encourage further contributions to enhance its capabilities.

Check out our interactive demo !

Features

Quick start

Installation

You can install EDS-NLP via pip. We recommend pinning the library version in your projects, or use a strict package manager like Poetry.

pip install edsnlp==0.12.2

or if you want to use the trainable components (using pytorch)

pip install "edsnlp[ml]==0.12.2"

A first pipeline

Once you've installed the library, let's begin with a very simple example that extracts mentions of COVID19 in a text, and detects whether they are negated.

import edsnlp, edsnlp.pipes as eds

nlp = edsnlp.blank("eds")

terms = dict(
    covid=["covid", "coronavirus"],
)

# Split the documents into sentences, this isneeded for negation detection
nlp.add_pipe(eds.sentences())
# Matcher component
nlp.add_pipe(eds.matcher(terms=terms))
# Negation detection (we also support spacy-like API !)
nlp.add_pipe("eds.negation")

# Process your text in one call !
doc = nlp("Le patient n'est pas atteint de covid")

doc.ents
# Out: (covid,)

doc.ents[0]._.negation
# Out: True

Documentation & Tutorials

Go to the documentation for more information.

Disclaimer

The performances of an extraction pipeline may depend on the population and documents that are considered.

Contributing to EDS-NLP

We welcome contributions ! Fork the project and propose a pull request. Take a look at the dedicated page for detail.

Citation

If you use EDS-NLP, please cite us as below.

@misc{edsnlp,
  author = {Wajsburt, Perceval and Petit-Jean, Thomas and Dura, Basile and Cohen, Ariel and Jean, Charline and Bey, Romain},
  doi    = {10.5281/zenodo.6424993},
  title  = {EDS-NLP: efficient information extraction from French clinical notes},
  url    = {https://aphp.github.io/edsnlp}
}

Acknowledgement

We would like to thank Assistance Publique – Hôpitaux de Paris, AP-HP Foundation and Inria for funding this project.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

edsnlp-0.12.2.tar.gz (1.6 MB view details)

Uploaded Source

Built Distributions

edsnlp-0.12.2-cp312-cp312-win_amd64.whl (1.9 MB view details)

Uploaded CPython 3.12 Windows x86-64

edsnlp-0.12.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.9 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

edsnlp-0.12.2-cp312-cp312-macosx_11_0_arm64.whl (2.0 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

edsnlp-0.12.2-cp312-cp312-macosx_10_9_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

edsnlp-0.12.2-cp311-cp311-win_amd64.whl (1.9 MB view details)

Uploaded CPython 3.11 Windows x86-64

edsnlp-0.12.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.9 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

edsnlp-0.12.2-cp311-cp311-macosx_11_0_arm64.whl (2.0 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

edsnlp-0.12.2-cp311-cp311-macosx_10_9_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

edsnlp-0.12.2-cp310-cp310-win_amd64.whl (1.9 MB view details)

Uploaded CPython 3.10 Windows x86-64

edsnlp-0.12.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

edsnlp-0.12.2-cp310-cp310-macosx_11_0_arm64.whl (2.0 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

edsnlp-0.12.2-cp310-cp310-macosx_10_9_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

edsnlp-0.12.2-cp39-cp39-win_amd64.whl (1.9 MB view details)

Uploaded CPython 3.9 Windows x86-64

edsnlp-0.12.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

edsnlp-0.12.2-cp39-cp39-macosx_11_0_arm64.whl (2.0 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

edsnlp-0.12.2-cp39-cp39-macosx_10_9_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

edsnlp-0.12.2-cp38-cp38-win_amd64.whl (1.9 MB view details)

Uploaded CPython 3.8 Windows x86-64

edsnlp-0.12.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.9 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

edsnlp-0.12.2-cp38-cp38-macosx_11_0_arm64.whl (2.0 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

edsnlp-0.12.2-cp38-cp38-macosx_10_9_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

edsnlp-0.12.2-cp37-cp37m-win_amd64.whl (1.9 MB view details)

Uploaded CPython 3.7m Windows x86-64

edsnlp-0.12.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

edsnlp-0.12.2-cp37-cp37m-macosx_10_9_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file edsnlp-0.12.2.tar.gz.

File metadata

  • Download URL: edsnlp-0.12.2.tar.gz
  • Upload date:
  • Size: 1.6 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.9.19

File hashes

Hashes for edsnlp-0.12.2.tar.gz
Algorithm Hash digest
SHA256 9a56897f9fcf621e0b64187154afa10b7b056b081030f9fd4c7230ba0b87bb6f
MD5 ff33bf69e27aaaff4d9b21d540b3bf93
BLAKE2b-256 efdec537cfcab65f0009d29f28275728fb3fa9718694070d43c18ba25a274b11

See more details on using hashes here.

File details

Details for the file edsnlp-0.12.2-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: edsnlp-0.12.2-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.9.19

File hashes

Hashes for edsnlp-0.12.2-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 cde074b2f12b8b9ac4915c591ef56eb750903a0dba289320adeef202096b0c88
MD5 b62edf072d2d79c4a2bb7f4826153324
BLAKE2b-256 25ce9815a815c7ba28a733085a50f3b8b379deac4e44b64b87422cf4b158d985

See more details on using hashes here.

File details

Details for the file edsnlp-0.12.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.12.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4f16952a9a693c779f550d36a151663ed9aec6cd45293cea341a2171e9a342df
MD5 918d4ae2d64730eae359edae24608c74
BLAKE2b-256 84e3ce191770544730d8fd6062793c7748d20e38a1362289779be9ede384e9d5

See more details on using hashes here.

File details

Details for the file edsnlp-0.12.2-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for edsnlp-0.12.2-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 c8cff4ae8d6e3c53acb72e9c19f230bec797fda0843a1c32bb3c703db5db2f21
MD5 fb10a1fcf753084f956b55b62fdf8e02
BLAKE2b-256 7f3def319b724503b5d9f7a8d1d86a49b4f59fbcf9712356f50230d5d3bed02b

See more details on using hashes here.

File details

Details for the file edsnlp-0.12.2-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.12.2-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 8e45e1f80d1549ffdb6dbaae8f0cbb268367c85620eb3ecaf036ab3ef438c61b
MD5 462fcaa3a53466d39e316bbe485a16ff
BLAKE2b-256 ece8e1eddd49fa4ddbed0ee9fad62cb0fe0c502a793f8976026af720e58d748b

See more details on using hashes here.

File details

Details for the file edsnlp-0.12.2-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: edsnlp-0.12.2-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.9.19

File hashes

Hashes for edsnlp-0.12.2-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 910a90f72f70211c21d6ee35623e328fc243ecf4bb0f3b3ad72d202400791d33
MD5 673bf42e8cd9f1bef7e24cc268f1995f
BLAKE2b-256 4d1d4001b510ceff76c7a8b8bf525e28c1e9a212eff822368f4fe85ca5446f6e

See more details on using hashes here.

File details

Details for the file edsnlp-0.12.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.12.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e4fe3babd4f2fb45e0f9ffb4eba33f6b8c5b8095a85983f0d4d3d73bb8c38304
MD5 70eda714c84b960311b5cbeeddfaaf0c
BLAKE2b-256 27075adc323070100319509829a61755ad4389e7daa8aaff12ea02ae82a94077

See more details on using hashes here.

File details

Details for the file edsnlp-0.12.2-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for edsnlp-0.12.2-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 6432608d87382ec15fb79304f88bd11e1b64ec5cc7704b1b1f013a27e01a1976
MD5 b2ae8153e455b652feb5d9e455677fa4
BLAKE2b-256 e8af4520944d6af50bef78c8b83a6d994a7d2ba33d69412d497a111810565ba5

See more details on using hashes here.

File details

Details for the file edsnlp-0.12.2-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.12.2-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 be43dd2f8dc0b817a7a58070c05aeafdf734c9b9ede47fee00c6546ee338babf
MD5 7d78c712d45b33f7caa150a6ed3da24b
BLAKE2b-256 4384e4e4bdca7586620284b14ec671527ff07827af3d348e8d1617765e5ed82b

See more details on using hashes here.

File details

Details for the file edsnlp-0.12.2-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: edsnlp-0.12.2-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.9.19

File hashes

Hashes for edsnlp-0.12.2-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 b481dbc24640afd31befda589ebe1725758ddf2988ef20de67c007e0d9b76743
MD5 d2bfbaec3a25566cad7252f3f404b4ea
BLAKE2b-256 505d611b7019fc8bfc4f6012b75246a5783fdfb2dd90b152db48c4c6ad24600e

See more details on using hashes here.

File details

Details for the file edsnlp-0.12.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.12.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 58700e5d55ad00095262f948e9161ea353d07f6c71546bce8919a51f73766d7a
MD5 d297527b585a98dc2ba2581f4892ec2f
BLAKE2b-256 4d545d9a28c71892cb13d8960d619ab9d69f0f39cfa542e184b7a3392b12960e

See more details on using hashes here.

File details

Details for the file edsnlp-0.12.2-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for edsnlp-0.12.2-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 ee4b071bb197836f5d4965c7b2ef1688047a40eb8132dbc2db905ab4bcbd4613
MD5 4614d4428c2fbad7bd34c588e1dfcf41
BLAKE2b-256 ac95d390d644e54d487b81cdaac1ff86efdab1bb57d7ebe6d2cfffb61c7671c5

See more details on using hashes here.

File details

Details for the file edsnlp-0.12.2-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.12.2-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 60bb6e93d20f46dfbf831dfc4ff5ea2168b8cd01f66b8be43ed0a4a1c53bf371
MD5 f38a19c08b64af8366f2554d07625295
BLAKE2b-256 9e19a1a9acf3805735dcec916eb67c8b6fce917d67a50d30857968f3378d19ef

See more details on using hashes here.

File details

Details for the file edsnlp-0.12.2-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: edsnlp-0.12.2-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.9.19

File hashes

Hashes for edsnlp-0.12.2-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 3cd490aa4690602408eac9a02184d6e5c8f18975834b27bd40d387c8a82b6255
MD5 112d50dd6cfd18f664810d90f88913c1
BLAKE2b-256 a16c913a4685bf98132f9522c8dbc034b7c6a05ae1560f15d8d66940cf4f39e9

See more details on using hashes here.

File details

Details for the file edsnlp-0.12.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.12.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0f7098405cfb1b32c8e1b1cbcae6491c3813ac5dc93632b541164bd3a9031439
MD5 d02501a003bde9d9fbf037aed8aead7e
BLAKE2b-256 6aaabe384d0fef00138d34b3b43b5ddad64bc7c1d06232d0fb7ae148f4ddc778

See more details on using hashes here.

File details

Details for the file edsnlp-0.12.2-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for edsnlp-0.12.2-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 66debdcecdbc4b196bbbf41384107e5cc9bbe86a2daef813956e773d49ae5c15
MD5 c44b1af65816df3fd28c835bc6b34dc4
BLAKE2b-256 e3805caab79aece066d3364224cdf55b48424530758ddd775b613f6c11a1a2f4

See more details on using hashes here.

File details

Details for the file edsnlp-0.12.2-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.12.2-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ca40d830d64a3ba2fe4697990e8a2142889f990d545296c4d5b874ea4605d61c
MD5 e73939abd577f93a271dbceda06e3212
BLAKE2b-256 6186328245f37e4606574d27023d23e8f05b6924980e3e0febf3e3491dfc98a2

See more details on using hashes here.

File details

Details for the file edsnlp-0.12.2-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: edsnlp-0.12.2-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.9.19

File hashes

Hashes for edsnlp-0.12.2-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 2030e7d0e63f035d211982e6d1d9f07b7ad02d131c0ec9e73d12937cefb96752
MD5 4a5e3cef34938537304fc83ee8bf3ba2
BLAKE2b-256 dfd2307763d67929888cafd867f922a5621080aadc974dd63ee3e320d8fcf45d

See more details on using hashes here.

File details

Details for the file edsnlp-0.12.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.12.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 785151d09d50432a26850c07bb118e5adf594b6be758c89a78d6983c57debaad
MD5 e9a0a20a8b009fbdba1167954970a80e
BLAKE2b-256 0fd45f5e276500290d1a48a7853005d42e48f93234ed3f3e5dc5aea890817dfe

See more details on using hashes here.

File details

Details for the file edsnlp-0.12.2-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for edsnlp-0.12.2-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 1a839e22bc1f3b0f104048cc40ae83627e15dd4e570a8576f309f0cdbc3544ba
MD5 9a71f352cb768acde69738f59d7372a9
BLAKE2b-256 51009a6b37c1579a482ceac55da4812bec11f5053c2e61a644734c84b9f1d056

See more details on using hashes here.

File details

Details for the file edsnlp-0.12.2-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.12.2-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 2d48d5fd242a9f0c6f9f6ea26f6cd22a5ad862302fc95716e503b6de1df64c19
MD5 373ca7a0672f69bb41f41f075be67a4d
BLAKE2b-256 6a402e83af1ff7b7e5eb79d936c48a4d8e19b1d457fec5fa3f7cd1591a40a75a

See more details on using hashes here.

File details

Details for the file edsnlp-0.12.2-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: edsnlp-0.12.2-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.9.19

File hashes

Hashes for edsnlp-0.12.2-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 799f5d139f057a8f6322b04f3fdfca05dfedd345b7e2d125be291c0753fb6023
MD5 ea820158c76291bd59850f7ce4bc8a4e
BLAKE2b-256 1212d6da647fd11446d1d2d9089dea1e84520a5231b5980c0da1b5e0882d6352

See more details on using hashes here.

File details

Details for the file edsnlp-0.12.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.12.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d5bfdb4f638cfe8adea169c83d66c494f1939ad8ad62278aa2b5e7133ff3afd6
MD5 68aaef6ac50127f6bce694c7e27b3486
BLAKE2b-256 ae68b5e58df9f551420f755df5a1026d1e4adc8b96e7040f56c9363ca4cb38cd

See more details on using hashes here.

File details

Details for the file edsnlp-0.12.2-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.12.2-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 bcd19645979493b8d0dd7e4f7d104598968a585bee6e777096fb84c7e915e3e2
MD5 d80f8a0f00ec908ec1b91760906ead7a
BLAKE2b-256 8faccf418e4ba99e6ff5477b256869931a8a3acde428ccb7845de91da87801ae

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page