Skip to main content

Modular, fast NLP framework, compatible with Pytorch and spaCy, offering tailored support for French clinical notes.

Project description

Tests Documentation PyPI Demo Coverage DOI

EDS-NLP

EDS-NLP is a collaborative NLP framework that aims primarily at extracting information from French clinical notes. At its core, it is a collection of components or pipes, either rule-based functions or deep learning modules. These components are organized into a novel efficient and modular pipeline system, built for hybrid and multitask models. We use spaCy to represent documents and their annotations, and Pytorch as a deep-learning backend for trainable components.

EDS-NLP is versatile and can be used on any textual document. The rule-based components are fully compatible with spaCy's components, and vice versa. This library is a product of collaborative effort, and we encourage further contributions to enhance its capabilities.

Check out our interactive demo !

Features

Quick start

Installation

You can install EDS-NLP via pip. We recommend pinning the library version in your projects, or use a strict package manager like Poetry.

pip install edsnlp==0.12.3

or if you want to use the trainable components (using pytorch)

pip install "edsnlp[ml]==0.12.3"

A first pipeline

Once you've installed the library, let's begin with a very simple example that extracts mentions of COVID19 in a text, and detects whether they are negated.

import edsnlp, edsnlp.pipes as eds

nlp = edsnlp.blank("eds")

terms = dict(
    covid=["covid", "coronavirus"],
)

# Split the documents into sentences, this isneeded for negation detection
nlp.add_pipe(eds.sentences())
# Matcher component
nlp.add_pipe(eds.matcher(terms=terms))
# Negation detection (we also support spacy-like API !)
nlp.add_pipe("eds.negation")

# Process your text in one call !
doc = nlp("Le patient n'est pas atteint de covid")

doc.ents
# Out: (covid,)

doc.ents[0]._.negation
# Out: True

Documentation & Tutorials

Go to the documentation for more information.

Disclaimer

The performances of an extraction pipeline may depend on the population and documents that are considered.

Contributing to EDS-NLP

We welcome contributions ! Fork the project and propose a pull request. Take a look at the dedicated page for detail.

Citation

If you use EDS-NLP, please cite us as below.

@misc{edsnlp,
  author = {Wajsburt, Perceval and Petit-Jean, Thomas and Dura, Basile and Cohen, Ariel and Jean, Charline and Bey, Romain},
  doi    = {10.5281/zenodo.6424993},
  title  = {EDS-NLP: efficient information extraction from French clinical notes},
  url    = {https://aphp.github.io/edsnlp}
}

Acknowledgement

We would like to thank Assistance Publique – Hôpitaux de Paris, AP-HP Foundation and Inria for funding this project.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

edsnlp-0.12.3.tar.gz (1.6 MB view details)

Uploaded Source

Built Distributions

edsnlp-0.12.3-cp312-cp312-win_amd64.whl (1.9 MB view details)

Uploaded CPython 3.12 Windows x86-64

edsnlp-0.12.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.9 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

edsnlp-0.12.3-cp312-cp312-macosx_11_0_arm64.whl (2.0 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

edsnlp-0.12.3-cp312-cp312-macosx_10_9_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

edsnlp-0.12.3-cp311-cp311-win_amd64.whl (1.9 MB view details)

Uploaded CPython 3.11 Windows x86-64

edsnlp-0.12.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.9 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

edsnlp-0.12.3-cp311-cp311-macosx_11_0_arm64.whl (2.0 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

edsnlp-0.12.3-cp311-cp311-macosx_10_9_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

edsnlp-0.12.3-cp310-cp310-win_amd64.whl (1.9 MB view details)

Uploaded CPython 3.10 Windows x86-64

edsnlp-0.12.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

edsnlp-0.12.3-cp310-cp310-macosx_11_0_arm64.whl (2.0 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

edsnlp-0.12.3-cp310-cp310-macosx_10_9_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

edsnlp-0.12.3-cp39-cp39-win_amd64.whl (1.9 MB view details)

Uploaded CPython 3.9 Windows x86-64

edsnlp-0.12.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

edsnlp-0.12.3-cp39-cp39-macosx_11_0_arm64.whl (2.0 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

edsnlp-0.12.3-cp39-cp39-macosx_10_9_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

edsnlp-0.12.3-cp38-cp38-win_amd64.whl (1.9 MB view details)

Uploaded CPython 3.8 Windows x86-64

edsnlp-0.12.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.9 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

edsnlp-0.12.3-cp38-cp38-macosx_11_0_arm64.whl (2.0 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

edsnlp-0.12.3-cp38-cp38-macosx_10_9_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

edsnlp-0.12.3-cp37-cp37m-win_amd64.whl (1.9 MB view details)

Uploaded CPython 3.7m Windows x86-64

edsnlp-0.12.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

edsnlp-0.12.3-cp37-cp37m-macosx_10_9_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file edsnlp-0.12.3.tar.gz.

File metadata

  • Download URL: edsnlp-0.12.3.tar.gz
  • Upload date:
  • Size: 1.6 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.9.19

File hashes

Hashes for edsnlp-0.12.3.tar.gz
Algorithm Hash digest
SHA256 0b48d2859706a748a4e5678fd304df5c1c0e39a750fb7835a983e7f168af174a
MD5 fd45d21803d026804785b4d4bd5162e7
BLAKE2b-256 73a6ffd6bb24250bcb6f7721057a239a10b393f9e418a468ffeda866bfa91e09

See more details on using hashes here.

Provenance

File details

Details for the file edsnlp-0.12.3-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: edsnlp-0.12.3-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.9.19

File hashes

Hashes for edsnlp-0.12.3-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 f87c47760782b2733ec54725a9d77fba091f1821776ecb95dc65d3eb9da9a57f
MD5 361646110c765ee4f59c91a03f4ebb1d
BLAKE2b-256 2f9e332dc53151ec88753542dd786a315a1220a30d65e06aecb2adb3339c3499

See more details on using hashes here.

Provenance

File details

Details for the file edsnlp-0.12.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.12.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 af42bef9a254d8a14d3e798c18ea2f070f72baa6d1afe95a10ac17a6876d134b
MD5 1328edce0cb3f224f0729ca35f9e0df0
BLAKE2b-256 30681d4870f6bf04626a0340347d9220c1d3aa0b718331d3d91e1167931b3b46

See more details on using hashes here.

Provenance

File details

Details for the file edsnlp-0.12.3-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for edsnlp-0.12.3-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 86dbd686b4d0eb532dfebff8221d9495462332571dafaa516f2d54af7e47649c
MD5 d757246b312f895c0ba87d742dca49e7
BLAKE2b-256 ddb1ca976027c3666a1c5e8dc00a5bbc4e723e0f781bc7ef578ff00f84c43e5c

See more details on using hashes here.

Provenance

File details

Details for the file edsnlp-0.12.3-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.12.3-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 2d13f61febf1ae85ec805eb5f53ace5534ecca621c671e958f169f1ca0d521af
MD5 d8edd199919bcfa73cce7dfd4bb9182f
BLAKE2b-256 60f1a56f99d59385f0aa098927583b10c8a056ebe9b7ea16385e37ffa37e7190

See more details on using hashes here.

Provenance

File details

Details for the file edsnlp-0.12.3-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: edsnlp-0.12.3-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.9.19

File hashes

Hashes for edsnlp-0.12.3-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 451dcabed0fc829c12fe06d38cbf60337e18696a229a13158e7051c816a1cda2
MD5 efbc561e4066b63ab8c8cd454b2e8849
BLAKE2b-256 789e821fbef590df9b1ef26536512af35a3a7c2126107fc0774ea093d55e8c2e

See more details on using hashes here.

Provenance

File details

Details for the file edsnlp-0.12.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.12.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 840bd545d9b2e434343955dd21ecd51e31971c7b5d0def720e962cc83408a9d8
MD5 4b81c110eb9c7fdf365ec2b489ec40ea
BLAKE2b-256 cb2a679c334d3abfa114f81daa7186d3523ed9668d931e0917f187c5375f4cd2

See more details on using hashes here.

Provenance

File details

Details for the file edsnlp-0.12.3-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for edsnlp-0.12.3-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 4435a3bf4bbf96672c722047063430e9a84deb593d92af0e18b63dccb931dddc
MD5 e9534ea1acd1afd927cfea6032a43c4f
BLAKE2b-256 9e62ca62fb36459209a40c33c434b8c6ca9390135a999e252a978513fc80de4e

See more details on using hashes here.

Provenance

File details

Details for the file edsnlp-0.12.3-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.12.3-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 13c96bb0cf54b830431ff0d69100118abbee54e6e43b2c5edd0f2dedabb8d52b
MD5 de4edad5129ce3c69699d03632dc82bd
BLAKE2b-256 a6dff079ef9469d06e486def73bfc294b6dd71c20c3cea66986c6a1d2673b211

See more details on using hashes here.

Provenance

File details

Details for the file edsnlp-0.12.3-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: edsnlp-0.12.3-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.9.19

File hashes

Hashes for edsnlp-0.12.3-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 9d349d75784ef3cf85f0d2c7a5de4779b7a42e449a4cd6e33db5aaf528c88f63
MD5 d7f17a33b4f96aedd3d3b5f714c3c7d1
BLAKE2b-256 5b16db4497c86ee2f8729d0cdcf826d0e6ce5b305a61ad0892658bd9e9fb218b

See more details on using hashes here.

Provenance

File details

Details for the file edsnlp-0.12.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.12.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4da8f43542e2e495bbbfd40e1e8408781985d11d841f2b2ddea8fbf2697bad06
MD5 052f7aea30de369c459bb44812a66905
BLAKE2b-256 ac915753745e9cb433763ff20cf04ac3349369295bbd53dbe48c57dc58e4fa8a

See more details on using hashes here.

Provenance

File details

Details for the file edsnlp-0.12.3-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for edsnlp-0.12.3-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 38922bce7b53ab4dd31c73e15d2650cfd3ed01dcb0fa546be8327666ce39e5be
MD5 d1a24de1ef0aab4d5b1134f1a64f8eb9
BLAKE2b-256 3f2b304d6aa6e9bc1bcfc5997608e396102ba76b7ea70a054c19a0324e27066b

See more details on using hashes here.

Provenance

File details

Details for the file edsnlp-0.12.3-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.12.3-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 78f3eed0bfa70ee01f506fb86eba8b48a76041c82226295d2afaf6b104fb29dd
MD5 117280182cead02ec217070c6722bcab
BLAKE2b-256 830a6b119f19c670cc875c4e3636a2111d3fcb7dbe6849143de15c8bf25088e4

See more details on using hashes here.

Provenance

File details

Details for the file edsnlp-0.12.3-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: edsnlp-0.12.3-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.9.19

File hashes

Hashes for edsnlp-0.12.3-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 8111eb06e742e48b4d6a704d379b1b5a8531f6e70768985661a9dc6623e75459
MD5 8b8a69981aa8b69af6319c6a5f2ed19d
BLAKE2b-256 cd98e2cc4bb3b0ca5f1f1d096608eea678bc0a250120435e8bacf81de76812e2

See more details on using hashes here.

Provenance

File details

Details for the file edsnlp-0.12.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.12.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f1bd4c82003f4a98269ac541b8535c130551cb73d051a605183b298c2ceb8e0f
MD5 0a448cad53d1b048a8c0d2fdc861cd72
BLAKE2b-256 1fc93ed23820af0ce1e8e4dbecd3536f08a323b78618395e0b48d4dd5bc7a074

See more details on using hashes here.

Provenance

File details

Details for the file edsnlp-0.12.3-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for edsnlp-0.12.3-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 0157dd36cffaa47501353a8257c58b0dbef33609d88890702df45ad0d81a5106
MD5 3f87c060c960f7643cdb386f7759a38d
BLAKE2b-256 34ba94ff07f8df71d61f2d4c6fa7cd21415e8c57fe0e5ec985bcbd8b391ee091

See more details on using hashes here.

Provenance

File details

Details for the file edsnlp-0.12.3-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.12.3-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 713dc91a62018fb16ee31beeab5ad96fbfe4839475580a807368250fe056c27e
MD5 5c77233252653739c5ec86cbbc18feaa
BLAKE2b-256 e063d3db0816b908e6267c120eb4f73754097e6a73b4bd3c3ccab78733c265b9

See more details on using hashes here.

Provenance

File details

Details for the file edsnlp-0.12.3-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: edsnlp-0.12.3-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.9.19

File hashes

Hashes for edsnlp-0.12.3-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 05873fd99c900b41f91291147a998f234d3b0728f93de4b583d9e6d6df1c1898
MD5 23495f76fdacfb2f91b30dc1d4712a6b
BLAKE2b-256 a4489e57f74259c18c1dff0ef521caee947de7fc3e8c6c2fb63e5c275bf73e5c

See more details on using hashes here.

Provenance

File details

Details for the file edsnlp-0.12.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.12.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2352fa8d53b5da6f1a080f65aad4107c93da453529f236ce802a10d437168fdb
MD5 3c770be7f44dd8fd8007ef1255db4251
BLAKE2b-256 69285c318112e983e433ed9289e198a776c6cc0d2eabe49a9c3ba4c0c7dcd246

See more details on using hashes here.

Provenance

File details

Details for the file edsnlp-0.12.3-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for edsnlp-0.12.3-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 e0bf8df3e9156b7fa6eb72491a8f346befefd2f6c8bded98dd953330a00c6ecb
MD5 6b63a7b6531afcf4c16fa9eeb3282136
BLAKE2b-256 aa27efa653a1b4a9f7a69e18902eb695ee9ba7077d3dc68842c75a92a22dfe3d

See more details on using hashes here.

Provenance

File details

Details for the file edsnlp-0.12.3-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.12.3-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 2d73791139c2ea1080efc7ae33a473ede335d97f0aa98d6cbf5ed015a3fa2851
MD5 d508d72731001842159d4762fdf59427
BLAKE2b-256 56dc83df28d7b9ba70b2b3cd69169399c876e6dd55d650fd6e844e48ec08278a

See more details on using hashes here.

Provenance

File details

Details for the file edsnlp-0.12.3-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: edsnlp-0.12.3-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.9.19

File hashes

Hashes for edsnlp-0.12.3-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 d0bf1dc68b5fb03067a4f41fa870120842368a4cf9ee61334067231a04489b02
MD5 8eb9418810713129b6f5518638b12b16
BLAKE2b-256 f5857e39dd2368fcf3c52df862edaf7552fd177478ed44ffeaba2b8e475b13a9

See more details on using hashes here.

Provenance

File details

Details for the file edsnlp-0.12.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.12.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 55c263bf7fa03fa19825341b1196d0d35ffb7525a5d2dcb42d9ecbbbeba572fe
MD5 9e3f54b6bf206192094699f2cb470fab
BLAKE2b-256 394e8f407c3f15014ed25ce6090d98a2de8a33f6453d5e44b5a5af30c938c0d7

See more details on using hashes here.

Provenance

File details

Details for the file edsnlp-0.12.3-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.12.3-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 e3e24ae461e15535f6d6f5ef478a3dae03f40b7bb802b69961e7d89e2035f486
MD5 f373b19cd7009fbf1e71829d98df9f58
BLAKE2b-256 94869598528eea1fbaa77717345ef286f6f69285c9ba002ce38a9a392a671b98

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page