Modular, fast NLP framework, compatible with Pytorch and spaCy, offering tailored support for French clinical notes.
Project description
EDS-NLP
EDS-NLP is a collaborative NLP framework that aims primarily at extracting information from French clinical notes. At its core, it is a collection of components or pipes, either rule-based functions or deep learning modules. These components are organized into a novel efficient and modular pipeline system, built for hybrid and multitask models. We use spaCy to represent documents and their annotations, and Pytorch as a deep-learning backend for trainable components.
EDS-NLP is versatile and can be used on any textual document. The rule-based components are fully compatible with spaCy's components, and vice versa. This library is a product of collaborative effort, and we encourage further contributions to enhance its capabilities.
Check out our interactive demo !
Features
- Rule-based components for French clinical notes
- Trainable components: NER, Span classification
- Support for multitask deep-learning models with weights sharing
- Fast inference, with multi-GPU support out of the box
- Easy to use, with a spaCy-like API
- Compatible with rule-based spaCy components
- Support for various io formats like BRAT, JSON, Parquet, Pandas or Spark
Quick start
Installation
You can install EDS-NLP via pip
. We recommend pinning the library version in your projects, or use a strict package manager like Poetry.
pip install edsnlp==0.13.1
or if you want to use the trainable components (using pytorch)
pip install "edsnlp[ml]==0.13.1"
A first pipeline
Once you've installed the library, let's begin with a very simple example that extracts mentions of COVID19 in a text, and detects whether they are negated.
import edsnlp, edsnlp.pipes as eds
nlp = edsnlp.blank("eds")
terms = dict(
covid=["covid", "coronavirus"],
)
# Split the documents into sentences, this isneeded for negation detection
nlp.add_pipe(eds.sentences())
# Matcher component
nlp.add_pipe(eds.matcher(terms=terms))
# Negation detection (we also support spacy-like API !)
nlp.add_pipe("eds.negation")
# Process your text in one call !
doc = nlp("Le patient n'est pas atteint de covid")
doc.ents
# Out: (covid,)
doc.ents[0]._.negation
# Out: True
Documentation & Tutorials
Go to the documentation for more information.
Disclaimer
The performances of an extraction pipeline may depend on the population and documents that are considered.
Contributing to EDS-NLP
We welcome contributions ! Fork the project and propose a pull request. Take a look at the dedicated page for detail.
Citation
If you use EDS-NLP, please cite us as below.
@misc{edsnlp,
author = {Wajsburt, Perceval and Petit-Jean, Thomas and Dura, Basile and Cohen, Ariel and Jean, Charline and Bey, Romain},
doi = {10.5281/zenodo.6424993},
title = {EDS-NLP: efficient information extraction from French clinical notes},
url = {https://aphp.github.io/edsnlp}
}
Acknowledgement
We would like to thank Assistance Publique – Hôpitaux de Paris, AP-HP Foundation and Inria for funding this project.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distributions
File details
Details for the file edsnlp-0.13.1.tar.gz
.
File metadata
- Download URL: edsnlp-0.13.1.tar.gz
- Upload date:
- Size: 1.6 MB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.9.20
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | c6df1129403b592333538889a058c3cfeda07a6dc42268227e8ed97a6d552547 |
|
MD5 | 604cdd23fa759ebf60fa4f835d7e3a99 |
|
BLAKE2b-256 | 0c4f30c037e31ee7ba558117ddc4eaac38237ed8d09cf96da24cba0405bf79a3 |
Provenance
File details
Details for the file edsnlp-0.13.1-cp312-cp312-win_amd64.whl
.
File metadata
- Download URL: edsnlp-0.13.1-cp312-cp312-win_amd64.whl
- Upload date:
- Size: 1.9 MB
- Tags: CPython 3.12, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.9.20
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | fb6eb6932df2670bbc981e7a215f7061f1bc1f9743701a47a5c4d58a1aea0292 |
|
MD5 | 724a8032bd3935eef53629048853e246 |
|
BLAKE2b-256 | 6a70cb72eedd0167a3c8389e1e367415208e1100c213f377e1e43f73a56f1a1e |
Provenance
File details
Details for the file edsnlp-0.13.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
.
File metadata
- Download URL: edsnlp-0.13.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
- Upload date:
- Size: 2.9 MB
- Tags: CPython 3.12, manylinux: glibc 2.17+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.9.20
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 4a6ad163ad1dc5554affc1d24d37562c9cd887ef54a9e99beb767310b4a290fc |
|
MD5 | b4c543a2bb5e2698614c39590733837d |
|
BLAKE2b-256 | 518fdaf50998ca2d223ecdbaa3c05c3718eda420df02a463e113dff71e789349 |
Provenance
File details
Details for the file edsnlp-0.13.1-cp312-cp312-macosx_11_0_arm64.whl
.
File metadata
- Download URL: edsnlp-0.13.1-cp312-cp312-macosx_11_0_arm64.whl
- Upload date:
- Size: 2.0 MB
- Tags: CPython 3.12, macOS 11.0+ ARM64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.9.20
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 6922f801e921edacb5be50e7272e065519ae2876942243f475676e0fdf0d940b |
|
MD5 | 86a860a29ac7ced95a5c7e3669bc6383 |
|
BLAKE2b-256 | 6b1ac7b759b897e5ff6580d01dae01584762773318c38d8852bd392f8f9d05e1 |
Provenance
File details
Details for the file edsnlp-0.13.1-cp312-cp312-macosx_10_13_x86_64.whl
.
File metadata
- Download URL: edsnlp-0.13.1-cp312-cp312-macosx_10_13_x86_64.whl
- Upload date:
- Size: 2.0 MB
- Tags: CPython 3.12, macOS 10.13+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.9.20
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 3df7e22c5bb396e25dace3d7532272b3df9504cc07afc34500c68694aee1ad66 |
|
MD5 | e6c48538b2b2c76fe21a5c6679220444 |
|
BLAKE2b-256 | f3746ac774ebfffb17ca4cb9c1cbd7cd3eceae40a1b29aeea7b45aa0aac3bba8 |
Provenance
File details
Details for the file edsnlp-0.13.1-cp311-cp311-win_amd64.whl
.
File metadata
- Download URL: edsnlp-0.13.1-cp311-cp311-win_amd64.whl
- Upload date:
- Size: 1.9 MB
- Tags: CPython 3.11, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.9.20
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 97d04b56fb3df402aaf53cff8fa3446f8f9d5ee8deb4ed85798a43da4f2724c0 |
|
MD5 | 846490276bb08e6ed1688fc7f5c69ab5 |
|
BLAKE2b-256 | 03c5bac71688f7174ab908696761ea215f2b5c6a00431611519ce35a6a31218b |
Provenance
File details
Details for the file edsnlp-0.13.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
.
File metadata
- Download URL: edsnlp-0.13.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
- Upload date:
- Size: 3.0 MB
- Tags: CPython 3.11, manylinux: glibc 2.17+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.9.20
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 3da1f7e8e2a031e092e6b8cf11ce61dc1ba4b01cd41c407897c4c43270d6c2cd |
|
MD5 | 2d2e6501f3b65c73273d14d2cc1347ed |
|
BLAKE2b-256 | a27e71d44cae9bc329f26339c0d3f8a5cf1752cbf660ad4c1a28656e99d0c552 |
Provenance
File details
Details for the file edsnlp-0.13.1-cp311-cp311-macosx_11_0_arm64.whl
.
File metadata
- Download URL: edsnlp-0.13.1-cp311-cp311-macosx_11_0_arm64.whl
- Upload date:
- Size: 2.0 MB
- Tags: CPython 3.11, macOS 11.0+ ARM64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.9.20
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 21dc5dc543b1a644d4d1a019d0bd25ff45d7e6b2b73db10228ec5cfab4e03cc5 |
|
MD5 | fd8d45079270073813e6148546ca4e26 |
|
BLAKE2b-256 | 4c827879a38a62e923a4b02a4407c6854fc186ce2bb459d5791feb0b983d307b |
Provenance
File details
Details for the file edsnlp-0.13.1-cp311-cp311-macosx_10_9_x86_64.whl
.
File metadata
- Download URL: edsnlp-0.13.1-cp311-cp311-macosx_10_9_x86_64.whl
- Upload date:
- Size: 2.0 MB
- Tags: CPython 3.11, macOS 10.9+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.9.20
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 0d074a03bc70c5bbca5670fabe6c5f8242b9632606da9fec4870c996d18992e8 |
|
MD5 | 8f8493feefb79198796af671c0924a15 |
|
BLAKE2b-256 | a971ceac58a580e9f39d8d423208ecdcb6bfdcf88bbb3405460d584eef967193 |
Provenance
File details
Details for the file edsnlp-0.13.1-cp310-cp310-win_amd64.whl
.
File metadata
- Download URL: edsnlp-0.13.1-cp310-cp310-win_amd64.whl
- Upload date:
- Size: 1.9 MB
- Tags: CPython 3.10, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.9.20
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 544f836563c20bcb3cab30824572a353a96d0f7d4ba869f71555a693bb8a48aa |
|
MD5 | 038c2b7f3f55df015351d65ab54b2ee4 |
|
BLAKE2b-256 | 62707b59d3eae3cfbe1a7f2236c5017f5cad1c144808718f4e70fec07754d137 |
Provenance
File details
Details for the file edsnlp-0.13.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
.
File metadata
- Download URL: edsnlp-0.13.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
- Upload date:
- Size: 2.9 MB
- Tags: CPython 3.10, manylinux: glibc 2.17+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.9.20
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 8feba78f82072e8e59642e624ed15ea5b5eebb7a56f6c00d64513e911fdf1150 |
|
MD5 | 557c271656c03f53a6f742fc4e4206b2 |
|
BLAKE2b-256 | 0e801078d59f5671641fc0a0f33fb46500189e50d0c7f8d69d86d64734bf2866 |
Provenance
File details
Details for the file edsnlp-0.13.1-cp310-cp310-macosx_11_0_arm64.whl
.
File metadata
- Download URL: edsnlp-0.13.1-cp310-cp310-macosx_11_0_arm64.whl
- Upload date:
- Size: 2.0 MB
- Tags: CPython 3.10, macOS 11.0+ ARM64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.9.20
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 02fff601c146683740eed023ecce7e45f0e19bbd6e0c2e5f0b115ec1b36bb16c |
|
MD5 | fc1ac534a5c36a05eca4e6f9ea2eb203 |
|
BLAKE2b-256 | 700f7116a05a3e209fe5852d0e093b683d1315b207045afc5c030e3865f1a609 |
Provenance
File details
Details for the file edsnlp-0.13.1-cp310-cp310-macosx_10_9_x86_64.whl
.
File metadata
- Download URL: edsnlp-0.13.1-cp310-cp310-macosx_10_9_x86_64.whl
- Upload date:
- Size: 2.0 MB
- Tags: CPython 3.10, macOS 10.9+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.9.20
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 56de1c6c5cd3fecaa3cc2dd1f7d673a339a8b9a8ad0ce17838992f7751a1b7dc |
|
MD5 | f33d0bf3c21db992ad978e8b603c1358 |
|
BLAKE2b-256 | e38943a802b6df8a44523e1a28b8950995d9d17bcc408c8ac5f0076ecb5f999e |
Provenance
File details
Details for the file edsnlp-0.13.1-cp39-cp39-win_amd64.whl
.
File metadata
- Download URL: edsnlp-0.13.1-cp39-cp39-win_amd64.whl
- Upload date:
- Size: 1.9 MB
- Tags: CPython 3.9, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.9.20
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 7d7da439398fcfd64044fb9f6eda82469a91d07e4462b3d7866ec12c3fa2cc04 |
|
MD5 | 44ce0f67670c2b0f792c163cf7a2637b |
|
BLAKE2b-256 | 881b43604bee96b46ad956c764bf0d374eb3d9fac36085b2fafc65e828bcd8fb |
Provenance
File details
Details for the file edsnlp-0.13.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
.
File metadata
- Download URL: edsnlp-0.13.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
- Upload date:
- Size: 2.9 MB
- Tags: CPython 3.9, manylinux: glibc 2.17+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.9.20
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 237c2179db0548c04d0fe96344e7c9938401cbadc02ee6950aae6818c8ee4add |
|
MD5 | 7a166409bad79149d1852c77431e9566 |
|
BLAKE2b-256 | cf2fc2cf0769282aa32115c500a272e1c3ddaf153c6219fefe1ad5720131ce45 |
Provenance
File details
Details for the file edsnlp-0.13.1-cp39-cp39-macosx_11_0_arm64.whl
.
File metadata
- Download URL: edsnlp-0.13.1-cp39-cp39-macosx_11_0_arm64.whl
- Upload date:
- Size: 2.0 MB
- Tags: CPython 3.9, macOS 11.0+ ARM64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.9.20
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | a45aae9d68b5ddc2c4fe93664ac8f295364683da0549899a94ef55834f197cd5 |
|
MD5 | 1219fa6cd7532f71605025da4f07998c |
|
BLAKE2b-256 | 3ddeface3b71198fa56a2a894afbb6e15355c740e3a1becfa9f72a953347319e |
Provenance
File details
Details for the file edsnlp-0.13.1-cp39-cp39-macosx_10_9_x86_64.whl
.
File metadata
- Download URL: edsnlp-0.13.1-cp39-cp39-macosx_10_9_x86_64.whl
- Upload date:
- Size: 2.0 MB
- Tags: CPython 3.9, macOS 10.9+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.9.20
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 1093a4d5051dbcb86f314563181be4d09bca977da12e27fc17d9122e35c3a215 |
|
MD5 | f3a09792e72904f6e6f0c8d864c65eaf |
|
BLAKE2b-256 | 7ca43ea00c6fa8789cacfa1cb45d13ef1f7fec19545f0f5526daac9e2449edfa |
Provenance
File details
Details for the file edsnlp-0.13.1-cp38-cp38-win_amd64.whl
.
File metadata
- Download URL: edsnlp-0.13.1-cp38-cp38-win_amd64.whl
- Upload date:
- Size: 1.9 MB
- Tags: CPython 3.8, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.9.20
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 71bede9cad25ff3b2c4fb126e91bf337345bb6a1cd09640e0f66e45cc348850f |
|
MD5 | 39f7927acb94562420a99c7199d21060 |
|
BLAKE2b-256 | b86f96027a68f266e317f1e4536aad86f26cc3d6c9b70cc3b45bf7775ab12511 |
Provenance
File details
Details for the file edsnlp-0.13.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
.
File metadata
- Download URL: edsnlp-0.13.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
- Upload date:
- Size: 2.9 MB
- Tags: CPython 3.8, manylinux: glibc 2.17+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.9.20
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 07558c9b87880a572e8170ad4559aabb716c3bf8910c0bc2b59383ca1a6277e0 |
|
MD5 | 154969ed5443e79269e61d39f84afbb3 |
|
BLAKE2b-256 | 28073b9a5fe46bab88966cef3e3cc5a0ffe68a34e968d57edf849bbf177e4ce3 |
Provenance
File details
Details for the file edsnlp-0.13.1-cp38-cp38-macosx_11_0_arm64.whl
.
File metadata
- Download URL: edsnlp-0.13.1-cp38-cp38-macosx_11_0_arm64.whl
- Upload date:
- Size: 2.0 MB
- Tags: CPython 3.8, macOS 11.0+ ARM64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.9.20
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 3d85f18f3d464ce2fb3ba9e5f388c29022d480088b75f7db3bf0522922e80f68 |
|
MD5 | 1acfd9733f9e848e8728d1069338e397 |
|
BLAKE2b-256 | b97027adc87a7d9407a9f3e257a01a03549fd2f20eedeeed33010f508015cd5d |
Provenance
File details
Details for the file edsnlp-0.13.1-cp38-cp38-macosx_10_9_x86_64.whl
.
File metadata
- Download URL: edsnlp-0.13.1-cp38-cp38-macosx_10_9_x86_64.whl
- Upload date:
- Size: 2.0 MB
- Tags: CPython 3.8, macOS 10.9+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.9.20
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 74daa4bd437ff22c04cade41743236e21275eb1275e2e0ed63b277fd60b3632f |
|
MD5 | a39bdfe967b88ef1cd911c2270fccdf2 |
|
BLAKE2b-256 | 78d74f2abb1f795932cb842100b4cf3f16a9db6edd74b5b815d3576ca3df3b39 |
Provenance
File details
Details for the file edsnlp-0.13.1-cp37-cp37m-win_amd64.whl
.
File metadata
- Download URL: edsnlp-0.13.1-cp37-cp37m-win_amd64.whl
- Upload date:
- Size: 1.9 MB
- Tags: CPython 3.7m, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.9.20
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 7df5d75a1670a5a9da05a1a64b2a018e035bb66a048d1da23ae6a4ed6fabae0b |
|
MD5 | 2f6e7c04cd7ebcf3646967ff3d245728 |
|
BLAKE2b-256 | 9605d65b5d8abef8b527355955a34fe15080f5fd1acdc19a726e97e6682f3ae6 |
Provenance
File details
Details for the file edsnlp-0.13.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
.
File metadata
- Download URL: edsnlp-0.13.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
- Upload date:
- Size: 2.8 MB
- Tags: CPython 3.7m, manylinux: glibc 2.17+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.9.20
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 4d34e442b00d82588fb2396f9460bb36090347b381ad80ad5c5af8c33d6b5a82 |
|
MD5 | faf7d8b092adb9215bdbfc5e1e35154a |
|
BLAKE2b-256 | d53b4f4823e365efc6979c877e8c96ebe2cc0c3199ddd6403f06039d1bfb7270 |
Provenance
File details
Details for the file edsnlp-0.13.1-cp37-cp37m-macosx_10_9_x86_64.whl
.
File metadata
- Download URL: edsnlp-0.13.1-cp37-cp37m-macosx_10_9_x86_64.whl
- Upload date:
- Size: 2.0 MB
- Tags: CPython 3.7m, macOS 10.9+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.9.20
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | b20ed08d5a4d79cc3641e8de30788c520e3154ac1c640fbbda18c71fc0ef491b |
|
MD5 | 59efae750540edf190444dda1f122ffb |
|
BLAKE2b-256 | 7c006cfaa8ff55ffac098b5697e01c72197e1bf537e56c1eda2aa49f5a386a56 |