Skip to main content

A set of spaCy components to extract information from clinical notes written in French.

Reason this release was yanked:

Issue with the PhraseMatcher

Project description

Tests Documentation PyPI Demo Codecov

EDS-NLP

EDS-NLP provides a set of spaCy components that are used to extract information from clinical notes written in French.

Check out the interactive demo!

If it's your first time with spaCy, we recommend you familiarise yourself with some of their key concepts by looking at the "spaCy 101" page in the documentation.

Quick start

Installation

You can install EDS-NLP via pip:

pip install edsnlp

We recommend pinning the library version in your projects, or use a strict package manager like Poetry.

pip install edsnlp==0.5.0

A first pipeline

Once you've installed the library, let's begin with a very simple example that extracts mentions of COVID19 in a text, and detects whether they are negated.

import spacy

nlp = spacy.blank("fr")

terms = dict(
    covid=["covid", "coronavirus"],
)

# Sentencizer component, needed for negation detection
nlp.add_pipe("eds.sentences")
# Matcher component
nlp.add_pipe("eds.matcher", config=dict(terms=terms))
# Negation detection
nlp.add_pipe("eds.negation")

# Process your text in one call !
doc = nlp("Le patient est atteint de covid")

doc.ents
# Out: (covid,)

doc.ents[0]._.negation
# Out: False

Documentation

Go to the documentation for more information.

Disclaimer

The performances of an extraction pipeline may depend on the population and documents that are considered.

Contributing to EDS-NLP

We welcome contributions ! Fork the project and propose a pull request. Take a look at the dedicated page for detail.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

edsnlp-0.5.0.tar.gz (417.4 kB view details)

Uploaded Source

Built Distributions

edsnlp-0.5.0-cp310-cp310-win_amd64.whl (400.9 kB view details)

Uploaded CPython 3.10 Windows x86-64

edsnlp-0.5.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (848.0 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

edsnlp-0.5.0-cp310-cp310-macosx_10_15_x86_64.whl (415.7 kB view details)

Uploaded CPython 3.10 macOS 10.15+ x86-64

edsnlp-0.5.0-cp39-cp39-win_amd64.whl (400.8 kB view details)

Uploaded CPython 3.9 Windows x86-64

edsnlp-0.5.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (846.1 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

edsnlp-0.5.0-cp39-cp39-macosx_10_15_x86_64.whl (415.6 kB view details)

Uploaded CPython 3.9 macOS 10.15+ x86-64

edsnlp-0.5.0-cp38-cp38-win_amd64.whl (400.8 kB view details)

Uploaded CPython 3.8 Windows x86-64

edsnlp-0.5.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (846.3 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

edsnlp-0.5.0-cp38-cp38-macosx_10_14_x86_64.whl (413.3 kB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

edsnlp-0.5.0-cp37-cp37m-win_amd64.whl (399.2 kB view details)

Uploaded CPython 3.7m Windows x86-64

edsnlp-0.5.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (811.7 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

edsnlp-0.5.0-cp37-cp37m-macosx_10_14_x86_64.whl (411.8 kB view details)

Uploaded CPython 3.7m macOS 10.14+ x86-64

File details

Details for the file edsnlp-0.5.0.tar.gz.

File metadata

  • Download URL: edsnlp-0.5.0.tar.gz
  • Upload date:
  • Size: 417.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.9.5

File hashes

Hashes for edsnlp-0.5.0.tar.gz
Algorithm Hash digest
SHA256 47ea81be6be89f0458335bf3aa8988ab8ce131e1a73cf4ab5f015a7b633b9096
MD5 44fff3019b97ab2c7067dff0f640ac75
BLAKE2b-256 a384798a7d1bb4cce031a6cd306d42f11157b46036700c1fb62916e7930d520d

See more details on using hashes here.

File details

Details for the file edsnlp-0.5.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: edsnlp-0.5.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 400.9 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.9.5

File hashes

Hashes for edsnlp-0.5.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 9d7bb0632d677833cc4c30ed20e7f95f064f1aa0aaec25187ac85fa291b98989
MD5 00894903ff7b85c72eb9ab8747c7a93b
BLAKE2b-256 1cba7a3f1e69474229537f435f99d4d239a8e5e4e18f7d0ba7da68efe19d4a8d

See more details on using hashes here.

File details

Details for the file edsnlp-0.5.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.5.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3d02cb8955a374a7c044a7157345f000e8a4ce7c4662d1525022b39aaa795773
MD5 dfadd98c8e8a5078f7f2e098ed2c971b
BLAKE2b-256 07f3da223ed55ecc5bbea06276835196ddc3c650b4d1f4ded57025c8373212f5

See more details on using hashes here.

File details

Details for the file edsnlp-0.5.0-cp310-cp310-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.5.0-cp310-cp310-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 533d91b2c118602158971eb4e5b7a185828df9db4f05e84fd193a9648fdda5bb
MD5 3f16bbd76f882b5754c0de5d9b59a9fd
BLAKE2b-256 f3f92d1d04d8271d3d5f99db3b0c9bb109a6cf32ce7e2c60c294782cba0214b9

See more details on using hashes here.

File details

Details for the file edsnlp-0.5.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: edsnlp-0.5.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 400.8 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.9.5

File hashes

Hashes for edsnlp-0.5.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 e242ff0bda61a80f9d7fc214a3aab404d2e32b886f6faf1be408aaae0c87a8cc
MD5 f880f62985d4b17ee66fffbdc1deaab9
BLAKE2b-256 4fc71acde0703d8b392bfac78b5f9dfa1a18df837645ebcab344c5565b005380

See more details on using hashes here.

File details

Details for the file edsnlp-0.5.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.5.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 fb1cb241d156bcc3a0df9f53f9f67e7320515e33e7fe86abf31fcc0b48dc923d
MD5 3c23da7bd0effba5d251ea0a83fc12e1
BLAKE2b-256 e37e23b72f1de9c104b7f9969449aa78731c6a03ae60b96fbadf387697189850

See more details on using hashes here.

File details

Details for the file edsnlp-0.5.0-cp39-cp39-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.5.0-cp39-cp39-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 09c54d00451c673454ff6cd9a077f85aac3df216926e24018fb8e651a4024e48
MD5 0423ad04a2dafb0caba15c7a29a367ad
BLAKE2b-256 03ed38cba32955dbe726bc48e52fe21b9ec8738955b571f24e1acf11e6baf77d

See more details on using hashes here.

File details

Details for the file edsnlp-0.5.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: edsnlp-0.5.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 400.8 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.9.5

File hashes

Hashes for edsnlp-0.5.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 9e99f19b4d76e42e11c7b50ad7d6d6186908a6db44c8a412b97214eb38e76579
MD5 bf85c99d73e80801528044f6c7fd8d8f
BLAKE2b-256 7baddef89ef83508b98cf16c729b39b395ff19f146d97b77cb124783bd3906f7

See more details on using hashes here.

File details

Details for the file edsnlp-0.5.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.5.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1634164db14db015a9e79210966a50432f635f57692588f088c2a52c10856682
MD5 ece8e359edb2a5b21a675ee6e9706c2d
BLAKE2b-256 3b63ecd253cd110b140c955284d0f829f11bbc22678a09a17f87a9f42a4e67f4

See more details on using hashes here.

File details

Details for the file edsnlp-0.5.0-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.5.0-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 a4952dac235e8e44537c58ac4065b903650ad889c3d1a45814044518c858a192
MD5 94f577d836c983ff0e7973a883946d13
BLAKE2b-256 6c72c5158c1b42964c69a325627ff3a5ee3f7df42d6e0373fadde6f7090d1d0b

See more details on using hashes here.

File details

Details for the file edsnlp-0.5.0-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: edsnlp-0.5.0-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 399.2 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.9.5

File hashes

Hashes for edsnlp-0.5.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 ebd0230ee62c5c415b3287f130477f395ae6126707bcc4e3595bb43bde722cad
MD5 eeb2d1763cffb77f8c2509670ab7f8f4
BLAKE2b-256 d1c586399dab623b4f9d64a848cb4964512c9edee3059c47a17eb7cd2b65ab33

See more details on using hashes here.

File details

Details for the file edsnlp-0.5.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.5.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e68d35f1e58c4ed0e2eaf0a95093563a19bf2eb288b2356b1a906fdd28969db8
MD5 23f217c2604fd65d1f584cbf8673380a
BLAKE2b-256 86ac6be45f8ccef1c2684d969924d7bf50d933c35e6b443d4440c2731f08c002

See more details on using hashes here.

File details

Details for the file edsnlp-0.5.0-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.5.0-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 10a69cfdaa86799af493ee8fe3536ddf6df3d0c0693b7a4a1cf9cead0c4b1f30
MD5 076874d701f46adf67f4011f1d29bd01
BLAKE2b-256 6c21d9f1f2facda351fc6f69c8e0ebe483a9cd90bf7d58589e1468737890741f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page