Skip to main content

A set of spaCy components to extract information from clinical notes written in French.

Project description

Tests Documentation PyPI Demo Codecov DOI

EDS-NLP

EDS-NLP provides a set of spaCy components that are used to extract information from clinical notes written in French.

Check out the interactive demo!

If it's your first time with spaCy, we recommend you familiarise yourself with some of their key concepts by looking at the "spaCy 101" page in the documentation.

Quick start

Installation

You can install EDS-NLP via pip:

pip install edsnlp

We recommend pinning the library version in your projects, or use a strict package manager like Poetry.

pip install edsnlp==0.5.1

A first pipeline

Once you've installed the library, let's begin with a very simple example that extracts mentions of COVID19 in a text, and detects whether they are negated.

import spacy

nlp = spacy.blank("fr")

terms = dict(
    covid=["covid", "coronavirus"],
)

# Sentencizer component, needed for negation detection
nlp.add_pipe("eds.sentences")
# Matcher component
nlp.add_pipe("eds.matcher", config=dict(terms=terms))
# Negation detection
nlp.add_pipe("eds.negation")

# Process your text in one call !
doc = nlp("Le patient est atteint de covid")

doc.ents
# Out: (covid,)

doc.ents[0]._.negation
# Out: False

Documentation

Go to the documentation for more information.

Disclaimer

The performances of an extraction pipeline may depend on the population and documents that are considered.

Contributing to EDS-NLP

We welcome contributions ! Fork the project and propose a pull request. Take a look at the dedicated page for detail.

Citation

If you use EDS-NLP, please cite us as below.

@misc{edsnlp,
  author = {Dura, Basile and Wajsburt, Perceval and Petit-Jean, Thomas and Cohen, Ariel and Jean, Charline and Bey, Romain},
  doi    = {10.5281/zenodo.6424993},
  title  = {EDS-NLP: efficient information extraction from French clinical notes},
  url    = {http://aphp.github.io/edsnlp}
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

edsnlp-0.5.1.tar.gz (418.2 kB view details)

Uploaded Source

Built Distributions

edsnlp-0.5.1-cp310-cp310-win_amd64.whl (401.1 kB view details)

Uploaded CPython 3.10 Windows x86-64

edsnlp-0.5.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (848.2 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

edsnlp-0.5.1-cp310-cp310-macosx_10_9_x86_64.whl (416.0 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

edsnlp-0.5.1-cp39-cp39-win_amd64.whl (401.1 kB view details)

Uploaded CPython 3.9 Windows x86-64

edsnlp-0.5.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (845.6 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

edsnlp-0.5.1-cp39-cp39-macosx_10_9_x86_64.whl (415.9 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

edsnlp-0.5.1-cp38-cp38-win_amd64.whl (401.0 kB view details)

Uploaded CPython 3.8 Windows x86-64

edsnlp-0.5.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (846.5 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

edsnlp-0.5.1-cp38-cp38-macosx_10_9_x86_64.whl (413.8 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

edsnlp-0.5.1-cp37-cp37m-win_amd64.whl (399.5 kB view details)

Uploaded CPython 3.7m Windows x86-64

edsnlp-0.5.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (811.9 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

edsnlp-0.5.1-cp37-cp37m-macosx_10_9_x86_64.whl (412.2 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file edsnlp-0.5.1.tar.gz.

File metadata

  • Download URL: edsnlp-0.5.1.tar.gz
  • Upload date:
  • Size: 418.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.9.12

File hashes

Hashes for edsnlp-0.5.1.tar.gz
Algorithm Hash digest
SHA256 634a15645b78254f5a2d4ebc188c065be341ed2131da4f568b24a26efe724a91
MD5 fae85eb71aed899c5224787dd7a0fed4
BLAKE2b-256 319c974b426148be527820915fb16ec5bee402eea16243c6160a4f11feb6538b

See more details on using hashes here.

Provenance

File details

Details for the file edsnlp-0.5.1-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: edsnlp-0.5.1-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 401.1 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.9.12

File hashes

Hashes for edsnlp-0.5.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 276cbaacad7b4e933b27a7add2f92361aeff473c0f82c85174702cc9c87b669a
MD5 29e99792c94714feaf111015c817bdd9
BLAKE2b-256 39c49e8ca459be4d285224b33c143ef5136276809e76fb56a55fa3ea55b1a203

See more details on using hashes here.

Provenance

File details

Details for the file edsnlp-0.5.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.5.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 dfb6b0c17d252f273323e69e0cb3a28fd7230a2de8f864953a48c9eabe7a1315
MD5 cffdb23e1aeea2a325510802c5ac6d45
BLAKE2b-256 fbc8145aabf0761e08c606a8bce3b517ddc5174bc55a453a2b3aa6d8f609632e

See more details on using hashes here.

Provenance

File details

Details for the file edsnlp-0.5.1-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.5.1-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 279f032e3ac4bca4505670799bd53744c4cf4b224487002ec2ebed16a1ad52cb
MD5 4aeefde1a286c8f271c09dcf1ffa4608
BLAKE2b-256 ace8acc5fcb12685b751ec4864975d23d3485ed55ced1e5710c88b62c9dd27bf

See more details on using hashes here.

Provenance

File details

Details for the file edsnlp-0.5.1-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: edsnlp-0.5.1-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 401.1 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.9.12

File hashes

Hashes for edsnlp-0.5.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 f1ffdaae0aa49ab81cc636937fe921213f672a23b264d84ec10257fa6eb02622
MD5 de39b85a8025edeaceeae8ca0a9214b6
BLAKE2b-256 2474540b8779278f6fd27e861271b8318a3ac08ba6d1e373679646d77b89eb5f

See more details on using hashes here.

Provenance

File details

Details for the file edsnlp-0.5.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.5.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3a942fe0680506a5f048b8fc398b95698f38c99e49661ed4b197d77e23ae9cbb
MD5 47e09f6bf68d806faf493198b0b6e5c5
BLAKE2b-256 dda05ae055f6b18a11e26d0078fc3d67eadce51054c387d8b5e67b4952281fbf

See more details on using hashes here.

Provenance

File details

Details for the file edsnlp-0.5.1-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.5.1-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 21b26d8f8b4787f61a3febb178d77e25a4c0f71af81a01fa9dbb6cee4a2585bb
MD5 63392a05bfc290de9e1e4162a6aff4fc
BLAKE2b-256 9fba728b0c98d9e9c2ff715af9bc041233c38b66a246ac5097c44463742d4bc7

See more details on using hashes here.

Provenance

File details

Details for the file edsnlp-0.5.1-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: edsnlp-0.5.1-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 401.0 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.9.12

File hashes

Hashes for edsnlp-0.5.1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 bbe9d33dc8f9c83cec146cb8f1f2b3545e4dbfe72187a37d83de1aa084bf48f7
MD5 82cd082db7283b5163257378e3886819
BLAKE2b-256 816dcdce77c992fd401cfef1b1bda8cf8adb1c260730ae24422e233e3d5d4c45

See more details on using hashes here.

Provenance

File details

Details for the file edsnlp-0.5.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.5.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 fb0a1e7394ada15941c08b083b2b558baa2f90b7279948dac76230cff6ae3c81
MD5 968355c948b1ba3592997017ebd777f7
BLAKE2b-256 10f6baffe62a67dcaeab49b11361dfe2c9f76aeca744a146b5521e7de9e5442f

See more details on using hashes here.

Provenance

File details

Details for the file edsnlp-0.5.1-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.5.1-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 0f5a63e02d961b3125864e95cc483e855c3de67db5146264b456b35f3b20d759
MD5 bc6051b02b31b3a4760cbff8c3130671
BLAKE2b-256 5f02fe20bab01b79874fda58ac846233a6da0fc9f36693315c13276cbfc63411

See more details on using hashes here.

Provenance

File details

Details for the file edsnlp-0.5.1-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: edsnlp-0.5.1-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 399.5 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.9.12

File hashes

Hashes for edsnlp-0.5.1-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 ec9afa3308c15d951c42bce6943b9092d669df8e08e4b140ec4e5e6207f86d50
MD5 0790bb37e67ea9389038f1dcaae6aad9
BLAKE2b-256 edee8015264ed3bb4a4600e9a981bc622335aebe924d3a4dcd54a5ba04767465

See more details on using hashes here.

Provenance

File details

Details for the file edsnlp-0.5.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.5.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 00223cbba4af1220131d8eb41ab54f07506178805c51842ff921f951a2fecc99
MD5 019bf20d79b6d0d88838604ceb4e29f5
BLAKE2b-256 1027c29dd55d5a90821ca871ab14bc28f2083de766bc1e0a1c8b064978dae65a

See more details on using hashes here.

Provenance

File details

Details for the file edsnlp-0.5.1-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.5.1-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 34a9dfca5146efff451b3593630a5b7453c61f909aa2a67f8b812d033b88e9bf
MD5 1d64dec37db092c3d0b28df895680b10
BLAKE2b-256 8eb778eef2b903c8b9f43c5eafb32f4fa38e29735ee0df88d3e85e5b3056d45a

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page