Skip to main content

A set of spaCy components to extract information from clinical notes written in French.

Project description

Tests Documentation PyPI Demo Codecov DOI

EDS-NLP

EDS-NLP provides a set of spaCy components that are used to extract information from clinical notes written in French.

Check out the interactive demo!

If it's your first time with spaCy, we recommend you familiarise yourself with some of their key concepts by looking at the "spaCy 101" page in the documentation.

Quick start

Installation

You can install EDS-NLP via pip:

pip install edsnlp

We recommend pinning the library version in your projects, or use a strict package manager like Poetry.

pip install edsnlp==0.5.2

A first pipeline

Once you've installed the library, let's begin with a very simple example that extracts mentions of COVID19 in a text, and detects whether they are negated.

import spacy

nlp = spacy.blank("fr")

terms = dict(
    covid=["covid", "coronavirus"],
)

# Sentencizer component, needed for negation detection
nlp.add_pipe("eds.sentences")
# Matcher component
nlp.add_pipe("eds.matcher", config=dict(terms=terms))
# Negation detection
nlp.add_pipe("eds.negation")

# Process your text in one call !
doc = nlp("Le patient est atteint de covid")

doc.ents
# Out: (covid,)

doc.ents[0]._.negation
# Out: False

Documentation

Go to the documentation for more information.

Disclaimer

The performances of an extraction pipeline may depend on the population and documents that are considered.

Contributing to EDS-NLP

We welcome contributions ! Fork the project and propose a pull request. Take a look at the dedicated page for detail.

Citation

If you use EDS-NLP, please cite us as below.

@misc{edsnlp,
  author = {Dura, Basile and Wajsburt, Perceval and Petit-Jean, Thomas and Cohen, Ariel and Jean, Charline and Bey, Romain},
  doi    = {10.5281/zenodo.6424993},
  title  = {EDS-NLP: efficient information extraction from French clinical notes},
  url    = {http://aphp.github.io/edsnlp}
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

edsnlp-0.5.2.tar.gz (418.9 kB view details)

Uploaded Source

Built Distributions

edsnlp-0.5.2-cp310-cp310-win_amd64.whl (402.1 kB view details)

Uploaded CPython 3.10 Windows x86-64

edsnlp-0.5.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (849.1 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

edsnlp-0.5.2-cp310-cp310-macosx_10_9_x86_64.whl (416.9 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

edsnlp-0.5.2-cp39-cp39-win_amd64.whl (402.0 kB view details)

Uploaded CPython 3.9 Windows x86-64

edsnlp-0.5.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (846.6 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

edsnlp-0.5.2-cp39-cp39-macosx_10_9_x86_64.whl (416.8 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

edsnlp-0.5.2-cp38-cp38-win_amd64.whl (401.9 kB view details)

Uploaded CPython 3.8 Windows x86-64

edsnlp-0.5.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (847.4 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

edsnlp-0.5.2-cp38-cp38-macosx_10_9_x86_64.whl (414.7 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

edsnlp-0.5.2-cp37-cp37m-win_amd64.whl (400.5 kB view details)

Uploaded CPython 3.7m Windows x86-64

edsnlp-0.5.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (812.8 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

edsnlp-0.5.2-cp37-cp37m-macosx_10_9_x86_64.whl (413.1 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file edsnlp-0.5.2.tar.gz.

File metadata

  • Download URL: edsnlp-0.5.2.tar.gz
  • Upload date:
  • Size: 418.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.9.12

File hashes

Hashes for edsnlp-0.5.2.tar.gz
Algorithm Hash digest
SHA256 5ace7ffb416abb7548f99722890e6f35641de7e590c1833a4eba1cc828e3c7b2
MD5 9b7050c74040a5eaf18ee8b28ee1b68b
BLAKE2b-256 2577f12d1a45939639bd98146701e4259d8dd593245afef2670af849cbbe3c11

See more details on using hashes here.

Provenance

File details

Details for the file edsnlp-0.5.2-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: edsnlp-0.5.2-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 402.1 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.9.12

File hashes

Hashes for edsnlp-0.5.2-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 3ff314b7c9e0556c5dfbd5f1c767f3629cf42ad90cf8bb85714e253f5a200edb
MD5 cacd61fe4a8397dfe97ec7f614ac0186
BLAKE2b-256 547e61b776f6e05ddb92ddcbdb3f807aeaa8406544754fafc38cea2f97fb8c92

See more details on using hashes here.

Provenance

File details

Details for the file edsnlp-0.5.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.5.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7dd8c0c7b418fba0acfd519be37bb55a4ffa56b8dc376440d1a50e6c94116271
MD5 08c2bf6fce9eb7ded485f0f02019ffaa
BLAKE2b-256 b310b8f75cc5aa484035d43f0a58e7a164637bb7bce08eb94970df3fec9a5242

See more details on using hashes here.

Provenance

File details

Details for the file edsnlp-0.5.2-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.5.2-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d06f66d652196c2f39d173c1fa8acfff25acc8c22028a6bf2f6d83a7923c8135
MD5 bf43b0ae5505dc26fb9693f5c7c3bbc1
BLAKE2b-256 592e01599713ad0ea49237d6b7c711df22050b55aeecaf6e121e3b5108b2fb48

See more details on using hashes here.

Provenance

File details

Details for the file edsnlp-0.5.2-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: edsnlp-0.5.2-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 402.0 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.9.12

File hashes

Hashes for edsnlp-0.5.2-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 65abaaba411a738073f704621c539182473b1c9ac56c93c1e34e9be72c07b2da
MD5 7caa8ab1cbfd534289228d53d5c04b5e
BLAKE2b-256 cd75b00c9b2f58388e0b52bd85190c7567174a46417da669ae39c7f06681161a

See more details on using hashes here.

Provenance

File details

Details for the file edsnlp-0.5.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.5.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a6376c0a2283128d56241afe8eb054fe2837ba665692cda0330b8a139212d347
MD5 8bd36eb8f9a567c75805f6d4d96dc537
BLAKE2b-256 88df687d31d89a41fd6c06b66bbd19beb3a0d17efbdc25d8c7a92c974736f612

See more details on using hashes here.

Provenance

File details

Details for the file edsnlp-0.5.2-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.5.2-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 e5d53bc2b0c1df9d72a4ed45724d684ac6ab454b9860f12a65920e2f0fcc1417
MD5 a78002325b1562d434b276aa9d0484ec
BLAKE2b-256 c47a182849215ea29f6076c227f615d14e5348179e11f270f19ed4f35e3b53aa

See more details on using hashes here.

Provenance

File details

Details for the file edsnlp-0.5.2-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: edsnlp-0.5.2-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 401.9 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.9.12

File hashes

Hashes for edsnlp-0.5.2-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 161be23448f2c07e6387ff3a7e8a2ec16cb2b069d3d618e4e2eb863bc7bb2c87
MD5 1a6425d623603831970b53fc88e375a9
BLAKE2b-256 be4c8d0afbbf1fcaf0f4260297d0db612575acaa37c3178530f6fd5b7fd5a1cb

See more details on using hashes here.

Provenance

File details

Details for the file edsnlp-0.5.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.5.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c999bbfe7db1bcbd9a874edbab22b4d237c4e8877380d0050a063fddf08a983c
MD5 a28fd9ab3e1af7b7223570e46231efa8
BLAKE2b-256 8f184860a0ae060edaf88190e3ad51292e4ce8cbb97eabcac12baab1c71e9da6

See more details on using hashes here.

Provenance

File details

Details for the file edsnlp-0.5.2-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.5.2-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 f8575719e97f8d2eeb62464fa80c4ad675f0e0cb9cb27a3ed548cd8540b4bb1f
MD5 03d8b86b33033b5fcc65feca56ca43ae
BLAKE2b-256 5213cb4df364e475e3b887da0e7960f6e6082291a6502836a466898f1f11bfc5

See more details on using hashes here.

Provenance

File details

Details for the file edsnlp-0.5.2-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: edsnlp-0.5.2-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 400.5 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.9.12

File hashes

Hashes for edsnlp-0.5.2-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 ff841925c0d2494835f51a5460b6c3e7975bcac734a3046bd0f0b0c73ba37d13
MD5 debf1d90ec5703ade745815103ca9fe4
BLAKE2b-256 c3af7cf17f54bb7d74eee52748a67f7b52a906020de07dca79afb7a4ecac5435

See more details on using hashes here.

Provenance

File details

Details for the file edsnlp-0.5.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.5.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 572c26ce31f2f0db029a04e28c641873f441d53e1251da530e947a41e6aa9124
MD5 a3f790d55a56ce43f4dd0b487cd9598f
BLAKE2b-256 dac545fe2a7080283141cadc5332df6287fcd4852c602dc60053ea474e92fa94

See more details on using hashes here.

Provenance

File details

Details for the file edsnlp-0.5.2-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.5.2-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 396735910fc4303010dcc796bbad5bd45716992d1a23e91dc4f7ecafce87ab7c
MD5 e9174e601ba1a66e55e7cfb9704f413a
BLAKE2b-256 1ccb14242aa0a6b2f4bdb05c1c20b9afd409741e63532247298137d2dec16efa

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page