Skip to main content

A set of spaCy components to extract information from clinical notes written in French.

Project description

Tests Documentation PyPI Demo Codecov DOI

EDS-NLP

EDS-NLP provides a set of spaCy components that are used to extract information from clinical notes written in French.

Check out the interactive demo!

If it's your first time with spaCy, we recommend you familiarise yourself with some of their key concepts by looking at the "spaCy 101" page in the documentation.

Quick start

Installation

You can install EDS-NLP via pip:

pip install edsnlp

We recommend pinning the library version in your projects, or use a strict package manager like Poetry.

pip install edsnlp==0.5.3

A first pipeline

Once you've installed the library, let's begin with a very simple example that extracts mentions of COVID19 in a text, and detects whether they are negated.

import spacy

nlp = spacy.blank("fr")

terms = dict(
    covid=["covid", "coronavirus"],
)

# Sentencizer component, needed for negation detection
nlp.add_pipe("eds.sentences")
# Matcher component
nlp.add_pipe("eds.matcher", config=dict(terms=terms))
# Negation detection
nlp.add_pipe("eds.negation")

# Process your text in one call !
doc = nlp("Le patient est atteint de covid")

doc.ents
# Out: (covid,)

doc.ents[0]._.negation
# Out: False

Documentation

Go to the documentation for more information.

Disclaimer

The performances of an extraction pipeline may depend on the population and documents that are considered.

Contributing to EDS-NLP

We welcome contributions ! Fork the project and propose a pull request. Take a look at the dedicated page for detail.

Citation

If you use EDS-NLP, please cite us as below.

@misc{edsnlp,
  author = {Dura, Basile and Wajsburt, Perceval and Petit-Jean, Thomas and Cohen, Ariel and Jean, Charline and Bey, Romain},
  doi    = {10.5281/zenodo.6424993},
  title  = {EDS-NLP: efficient information extraction from French clinical notes},
  url    = {http://aphp.github.io/edsnlp}
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

edsnlp-0.5.3.tar.gz (421.6 kB view details)

Uploaded Source

Built Distributions

edsnlp-0.5.3-cp310-cp310-win_amd64.whl (406.6 kB view details)

Uploaded CPython 3.10 Windows x86-64

edsnlp-0.5.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (853.7 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

edsnlp-0.5.3-cp310-cp310-macosx_10_9_x86_64.whl (421.3 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

edsnlp-0.5.3-cp39-cp39-win_amd64.whl (406.5 kB view details)

Uploaded CPython 3.9 Windows x86-64

edsnlp-0.5.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (851.1 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

edsnlp-0.5.3-cp39-cp39-macosx_10_9_x86_64.whl (421.2 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

edsnlp-0.5.3-cp38-cp38-win_amd64.whl (406.4 kB view details)

Uploaded CPython 3.8 Windows x86-64

edsnlp-0.5.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (852.0 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

edsnlp-0.5.3-cp38-cp38-macosx_10_9_x86_64.whl (419.1 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

edsnlp-0.5.3-cp37-cp37m-win_amd64.whl (404.9 kB view details)

Uploaded CPython 3.7m Windows x86-64

edsnlp-0.5.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (817.4 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

edsnlp-0.5.3-cp37-cp37m-macosx_10_9_x86_64.whl (417.5 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file edsnlp-0.5.3.tar.gz.

File metadata

  • Download URL: edsnlp-0.5.3.tar.gz
  • Upload date:
  • Size: 421.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.9.12

File hashes

Hashes for edsnlp-0.5.3.tar.gz
Algorithm Hash digest
SHA256 6f7b6fba73b4f83be0dc2783df4a4a0a9da05f281133bb9eb78a50578f5f3a75
MD5 12a23bbb402e4a630651ebbcbc30e78b
BLAKE2b-256 59771a268a2fa0e8fe583a554dac63c00e354c8920a900c4f6e48a3b7ac9a6cb

See more details on using hashes here.

File details

Details for the file edsnlp-0.5.3-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: edsnlp-0.5.3-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 406.6 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.9.12

File hashes

Hashes for edsnlp-0.5.3-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 05cc4e21bf0e9a21568c1fefca93032543686f6ab13010f6baa7e65735ac49c7
MD5 37d356fab770ecc2f19eb50a14670772
BLAKE2b-256 19524a2a6a728f9b32ddf672d874c713bef3eb11ebbe8a49afde1215dd89eeec

See more details on using hashes here.

File details

Details for the file edsnlp-0.5.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.5.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 026fa97951595c682a97ccf0ca18c1560d7059e2145c6079d28d062ed928ce07
MD5 11d1b1d71a5fdc27eda33e892ce18538
BLAKE2b-256 c71a2dd1726955a0c660fe365d95679f3d5480eb6cc775f0f2e8495abaed5208

See more details on using hashes here.

File details

Details for the file edsnlp-0.5.3-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.5.3-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c717a093795dccdd5955db4bee14ae85d63af2a22c2fadc31f43d9f9ca326e85
MD5 c9ab6f6ad3579afe314e740b6c62701b
BLAKE2b-256 60bb80c8052e32db1d3eeab2974d203ea636b9c9b515e9ceee17bb882991bb79

See more details on using hashes here.

File details

Details for the file edsnlp-0.5.3-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: edsnlp-0.5.3-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 406.5 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.9.12

File hashes

Hashes for edsnlp-0.5.3-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 a84e683e74d64fc2f6a49c02d4018d9cf7f10914ae30a85618ac694dd381775e
MD5 c85d82e5f5c09efffa4530292af11329
BLAKE2b-256 70cf805610bf0c69eb03bb98acc29915f41ca43b68676579c2bab24959a58073

See more details on using hashes here.

File details

Details for the file edsnlp-0.5.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.5.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 545be32a4b19cdb357d08fa5bc0e63aff828b62006a23fe3a1aec162d0757a92
MD5 c6f50945603012820376a8e2b30fccab
BLAKE2b-256 b7ee4537d064e68db63946180626661c98dc0c363283df181ef4518a6934de99

See more details on using hashes here.

File details

Details for the file edsnlp-0.5.3-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.5.3-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 e56868e4864105ef1ce9bc50cb537cd030acddd83883c87894e63cca2479b53a
MD5 16ada5d6553a5a9f188bb8ecd56cc161
BLAKE2b-256 09ac31dfb4133c1966635085f40c256c96c3bc69665ee883360ef32847aca00a

See more details on using hashes here.

File details

Details for the file edsnlp-0.5.3-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: edsnlp-0.5.3-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 406.4 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.9.12

File hashes

Hashes for edsnlp-0.5.3-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 8533509e30f08f54ced37f7d673a194410603e8a7153e2911887054e06ed4929
MD5 4062b577403efdf48264b9bede837d61
BLAKE2b-256 906e2e089d65f96a7677713c5cc8f2c98debbbfcc10853f3909a1c0f0d15fa85

See more details on using hashes here.

File details

Details for the file edsnlp-0.5.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.5.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7e0927ecf492178baf9827dbbcd37973bd9037cb14dd628afc30ad3f86a9ad9e
MD5 f5bd05e4dabe5d094f332da815687f51
BLAKE2b-256 eee8f90fe518610462a41d126e6e9952e86fbdfd432f4e8b603930d8f79a3fd9

See more details on using hashes here.

File details

Details for the file edsnlp-0.5.3-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.5.3-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 5cce1e438a39aa0b4a649c8be3cabab40ecc4d8be34d67666ec4b6bc2b521dc5
MD5 c3e3d2d373d1be3f99e2a8b31f695984
BLAKE2b-256 5a3331a00ae57acab92d1abfa301b7f08398fbc00eb6b75a689034d73fdfe181

See more details on using hashes here.

File details

Details for the file edsnlp-0.5.3-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: edsnlp-0.5.3-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 404.9 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.9.12

File hashes

Hashes for edsnlp-0.5.3-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 718b7ce138fd722953654ec1b5779097329fefa0c56554322ee724577300c333
MD5 6b0ad74776c8360cc576bb3c3dd3f02d
BLAKE2b-256 677f86840c418a31416d78664747e35730f9b4cb734ac926aa82ad12258d884e

See more details on using hashes here.

File details

Details for the file edsnlp-0.5.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.5.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 93edbc71550e7d00e4e907482544f885767e1cd4b086a045bbbadc6113b6a88a
MD5 5d09e75b1436ca0f42ff61eeca751f71
BLAKE2b-256 ef0d483b574e9c23885b4670a382686f555d2bb8d5f6160915b04849dc4782c6

See more details on using hashes here.

File details

Details for the file edsnlp-0.5.3-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.5.3-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 4eb4e2530ed170fc2b45d18f2e692928e4ef8c1666f11898ac73eb39d0da8003
MD5 6e92a343ca89db11acf4959f81e9a076
BLAKE2b-256 5de3c4190893cec7dde85918089a559f1887f3354261e0af3741bf19eb17a1ae

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page