Skip to main content

A set of spaCy components to extract information from clinical notes written in French.

Project description

Tests Documentation PyPI Demo Codecov DOI

EDS-NLP

EDS-NLP provides a set of spaCy components that are used to extract information from clinical notes written in French.

Check out the interactive demo!

If it's your first time with spaCy, we recommend you familiarise yourself with some of their key concepts by looking at the "spaCy 101" page in the documentation.

Quick start

Installation

You can install EDS-NLP via pip:

pip install edsnlp

We recommend pinning the library version in your projects, or use a strict package manager like Poetry.

pip install edsnlp==0.6.0

A first pipeline

Once you've installed the library, let's begin with a very simple example that extracts mentions of COVID19 in a text, and detects whether they are negated.

import spacy

nlp = spacy.blank("fr")

terms = dict(
    covid=["covid", "coronavirus"],
)

# Sentencizer component, needed for negation detection
nlp.add_pipe("eds.sentences")
# Matcher component
nlp.add_pipe("eds.matcher", config=dict(terms=terms))
# Negation detection
nlp.add_pipe("eds.negation")

# Process your text in one call !
doc = nlp("Le patient est atteint de covid")

doc.ents
# Out: (covid,)

doc.ents[0]._.negation
# Out: False

Documentation

Go to the documentation for more information.

Disclaimer

The performances of an extraction pipeline may depend on the population and documents that are considered.

Contributing to EDS-NLP

We welcome contributions ! Fork the project and propose a pull request. Take a look at the dedicated page for detail.

Citation

If you use EDS-NLP, please cite us as below.

@misc{edsnlp,
  author = {Dura, Basile and Wajsburt, Perceval and Petit-Jean, Thomas and Cohen, Ariel and Jean, Charline and Bey, Romain},
  doi    = {10.5281/zenodo.6424993},
  title  = {EDS-NLP: efficient information extraction from French clinical notes},
  url    = {http://aphp.github.io/edsnlp}
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

edsnlp-0.6.0.tar.gz (1.1 MB view details)

Uploaded Source

Built Distributions

edsnlp-0.6.0-cp310-cp310-win_amd64.whl (1.1 MB view details)

Uploaded CPython 3.10 Windows x86-64

edsnlp-0.6.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

edsnlp-0.6.0-cp310-cp310-macosx_10_9_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

edsnlp-0.6.0-cp39-cp39-win_amd64.whl (1.1 MB view details)

Uploaded CPython 3.9 Windows x86-64

edsnlp-0.6.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

edsnlp-0.6.0-cp39-cp39-macosx_10_9_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

edsnlp-0.6.0-cp38-cp38-win_amd64.whl (1.1 MB view details)

Uploaded CPython 3.8 Windows x86-64

edsnlp-0.6.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

edsnlp-0.6.0-cp38-cp38-macosx_10_9_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

edsnlp-0.6.0-cp37-cp37m-win_amd64.whl (1.1 MB view details)

Uploaded CPython 3.7m Windows x86-64

edsnlp-0.6.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

edsnlp-0.6.0-cp37-cp37m-macosx_10_9_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file edsnlp-0.6.0.tar.gz.

File metadata

  • Download URL: edsnlp-0.6.0.tar.gz
  • Upload date:
  • Size: 1.1 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for edsnlp-0.6.0.tar.gz
Algorithm Hash digest
SHA256 e9d949eb75a5c2726dfa14283247e6e005d5acd274c3dd066041efffa42f3403
MD5 9822e0577134ba6b129cf6d750e7a0da
BLAKE2b-256 eebf2c666c7f14be23da5bc311f8b252d70d8f1fb1a4606d93d7a2e37412e949

See more details on using hashes here.

File details

Details for the file edsnlp-0.6.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: edsnlp-0.6.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 1.1 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for edsnlp-0.6.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 7ce8c1ea71a002236e2228e039bea29814fc701f54cec246eb3da8f1f95fe4c7
MD5 d52cf69208491c29142ce7e438f1ee9e
BLAKE2b-256 fc1c430d579f5b45d65f8e428116273ff952a043c2da2df58555c12186c96ded

See more details on using hashes here.

File details

Details for the file edsnlp-0.6.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.6.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3a6a6de87c5469c963cfed0c36a48cb1e93991fc652d12b075ea0d909d76c464
MD5 4c6ea7deff2421b09942a3cec55ef56d
BLAKE2b-256 674037f45e09fbfd13e704581549eb6304c8255061bb05c29cdcdf9b219b28b9

See more details on using hashes here.

File details

Details for the file edsnlp-0.6.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.6.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 0595c526408de6c9f0208005f445dac23b082024ec0db350915da4d4444ae0f9
MD5 8d9e0a32fd3bdebb7685bf0aa3b64185
BLAKE2b-256 93ae169d108af1e119deb75f173c072b169f61dcdc67b696e5e13a57c21be821

See more details on using hashes here.

File details

Details for the file edsnlp-0.6.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: edsnlp-0.6.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 1.1 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for edsnlp-0.6.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 7851fbc01581d641c80d81dd2269ee08275bcb8123648163097c754a4e52316e
MD5 2cc620486c31415924c6aa7684be56db
BLAKE2b-256 d2a82a67ab2ac78037428b2ad1eb8fcee69eb97388ebe830b0dc40a87a4bc757

See more details on using hashes here.

File details

Details for the file edsnlp-0.6.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.6.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 df09230d7570c742adfef57d8d8bc766be5e75aa02d32d4d267d4a9ce3de8b0d
MD5 4802b085a14616edf70dec8d31b8ae81
BLAKE2b-256 ac97b7a43f652bb18c9b374414669284d6c60abeee57229a9eb3f7a2d30bcee3

See more details on using hashes here.

File details

Details for the file edsnlp-0.6.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.6.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 47d9e3f1bf63d4aef1912a20e4b8efc45e5e8f24a4e9d07d69df68b13962a667
MD5 9a610daee8ca8a525fa22b118ff63ff7
BLAKE2b-256 61b0a869ec6a236c87a2bea9530a90a5df262bd26951b09430d9285b2b81a3fe

See more details on using hashes here.

File details

Details for the file edsnlp-0.6.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: edsnlp-0.6.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 1.1 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for edsnlp-0.6.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 13bbece36e22f0fe0d4c2b5fcca7b8a589f6a3b2d1e4db3a0cf48f7eee6ee793
MD5 48dd232a02afdcb74891dc21c28ff385
BLAKE2b-256 29135006ac849ffec26ea4d320784fd3e9db89f68a468a58c71caad78beab763

See more details on using hashes here.

File details

Details for the file edsnlp-0.6.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.6.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 35d1c765fe2cbeac642eacb41d3f59e86bcf319319b44ce927ef76651aa291d6
MD5 fc6610217b430b23b5bdec75d4f24a47
BLAKE2b-256 6489a4d03c6cd41d6e2b96b1bd0b1d3f69fc314c5398515615a3d87fc93d8aa2

See more details on using hashes here.

File details

Details for the file edsnlp-0.6.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.6.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 f8ba1f1f09a1f70b873357cdec3594925972df39662f330267c1e5b3eb895d69
MD5 39594a1d79f2453c8661bf81f45eda69
BLAKE2b-256 fc6110e1d347b5cfe8c6bee8edb1dfdb8bffeb0db43f85ab1db6d70e91a23c59

See more details on using hashes here.

File details

Details for the file edsnlp-0.6.0-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: edsnlp-0.6.0-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 1.1 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for edsnlp-0.6.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 b43e06d76cfdd08c600522a88128b83fe3a19f6aaf5195169b80f99872b3fd08
MD5 cdea5bd67f6e8bf533f4d67a11126b32
BLAKE2b-256 04de9da52066bd07286d9a7467fe596b9098e92cdd60f0586e2319e466f97675

See more details on using hashes here.

File details

Details for the file edsnlp-0.6.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.6.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ebb760d4530f25456b717d5d59fafcaebdb1a6a8bb0eb27825225115502f27d1
MD5 da81c87fe09970c32cde6b564b9c1638
BLAKE2b-256 9a660722c4cd6b3629e93e6cdf347bc481461a8f7cdcab5a3a84742f007840cc

See more details on using hashes here.

File details

Details for the file edsnlp-0.6.0-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.6.0-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d0c93cfe2a864ed1654bb145665ddf3988a2451c64547aeb8732744b043406ac
MD5 5a6cb535f857cd28d153856160853d70
BLAKE2b-256 21592f6a920575207732adae9cff664f03af070f44dc5925b8be30b694184fc9

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page