Skip to main content

A set of spaCy components to extract information from clinical notes written in French.

Project description

Tests Documentation PyPI Demo Codecov DOI

EDS-NLP

EDS-NLP provides a set of spaCy components that are used to extract information from clinical notes written in French.

Check out the interactive demo!

If it's your first time with spaCy, we recommend you familiarise yourself with some of their key concepts by looking at the "spaCy 101" page in the documentation.

Quick start

Installation

You can install EDS-NLP via pip:

pip install edsnlp

We recommend pinning the library version in your projects, or use a strict package manager like Poetry.

pip install edsnlp==0.6.1

A first pipeline

Once you've installed the library, let's begin with a very simple example that extracts mentions of COVID19 in a text, and detects whether they are negated.

import spacy

nlp = spacy.blank("fr")

terms = dict(
    covid=["covid", "coronavirus"],
)

# Sentencizer component, needed for negation detection
nlp.add_pipe("eds.sentences")
# Matcher component
nlp.add_pipe("eds.matcher", config=dict(terms=terms))
# Negation detection
nlp.add_pipe("eds.negation")

# Process your text in one call !
doc = nlp("Le patient est atteint de covid")

doc.ents
# Out: (covid,)

doc.ents[0]._.negation
# Out: False

Documentation

Go to the documentation for more information.

Disclaimer

The performances of an extraction pipeline may depend on the population and documents that are considered.

Contributing to EDS-NLP

We welcome contributions ! Fork the project and propose a pull request. Take a look at the dedicated page for detail.

Citation

If you use EDS-NLP, please cite us as below.

@misc{edsnlp,
  author = {Dura, Basile and Wajsburt, Perceval and Petit-Jean, Thomas and Cohen, Ariel and Jean, Charline and Bey, Romain},
  doi    = {10.5281/zenodo.6424993},
  title  = {EDS-NLP: efficient information extraction from French clinical notes},
  url    = {http://aphp.github.io/edsnlp}
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

edsnlp-0.6.1.tar.gz (1.2 MB view details)

Uploaded Source

Built Distributions

edsnlp-0.6.1-cp310-cp310-win_amd64.whl (1.1 MB view details)

Uploaded CPython 3.10 Windows x86-64

edsnlp-0.6.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

edsnlp-0.6.1-cp310-cp310-macosx_10_9_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

edsnlp-0.6.1-cp39-cp39-win_amd64.whl (1.1 MB view details)

Uploaded CPython 3.9 Windows x86-64

edsnlp-0.6.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

edsnlp-0.6.1-cp39-cp39-macosx_10_9_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

edsnlp-0.6.1-cp38-cp38-win_amd64.whl (1.1 MB view details)

Uploaded CPython 3.8 Windows x86-64

edsnlp-0.6.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

edsnlp-0.6.1-cp38-cp38-macosx_10_9_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

edsnlp-0.6.1-cp37-cp37m-win_amd64.whl (1.1 MB view details)

Uploaded CPython 3.7m Windows x86-64

edsnlp-0.6.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

edsnlp-0.6.1-cp37-cp37m-macosx_10_9_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file edsnlp-0.6.1.tar.gz.

File metadata

  • Download URL: edsnlp-0.6.1.tar.gz
  • Upload date:
  • Size: 1.2 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for edsnlp-0.6.1.tar.gz
Algorithm Hash digest
SHA256 f3ba59b2b3e4517bfc8b9c84db2f66e914fa1ad3b840dc3ce7d544daa8d1577b
MD5 41455982a67b63f4241b242583ec0c40
BLAKE2b-256 a03dda01db1af17f7388f28cfb7bbd5a528325e7a0775ced216502615a998646

See more details on using hashes here.

File details

Details for the file edsnlp-0.6.1-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: edsnlp-0.6.1-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 1.1 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for edsnlp-0.6.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 0874f32acd97335fdfe262c52a4feadcc1139c972539c220fdbc5bd91d4a40bc
MD5 16f5ee53f904ac3b2732918c565b9af6
BLAKE2b-256 db37724b703b9bec05b29d6c53b69289f3430d88f9f0cab4df178b67c4b9679a

See more details on using hashes here.

File details

Details for the file edsnlp-0.6.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.6.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3ed0d37a1ea23ce19010d78c85758533fc966944d71d1a18e4d09d09bd074660
MD5 f21932cd6464c29b2befef7b7af6b5dd
BLAKE2b-256 8059a25e9ee0f1f0cd437ef04de1aef0d68554abd001929100d1867480b745cc

See more details on using hashes here.

File details

Details for the file edsnlp-0.6.1-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.6.1-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 bb74c12fe8d473256a9334c69e751d017479db6283e7d7b1b979cdddd3b2f418
MD5 3a424396b486a191c5f76feba2f5f5f0
BLAKE2b-256 9b806b2c4a612e1eb154339193739c61f4d9596b17774c50f743edf9858e9057

See more details on using hashes here.

File details

Details for the file edsnlp-0.6.1-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: edsnlp-0.6.1-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 1.1 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for edsnlp-0.6.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 f72ed3e9070b040fba5f64385db1354b495e35e9cb5f73c0da6defc093f1ce6f
MD5 baab485e4ae280d665549e71b7b34a20
BLAKE2b-256 ea392e59ed8823fcebaf9e69ded2508ae8ef4fbd9af74ae8fbad591ba53255a2

See more details on using hashes here.

File details

Details for the file edsnlp-0.6.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.6.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c24d92a60fe8cd994c05903c94bd1cbcbb91c2df45e2a52901922c5683b59f7a
MD5 6da6e6fe02ea98e70b6955f1aad4c565
BLAKE2b-256 57ef05ab4f4b2bc69e954f4176244df7b88d1feb7e6c8efdadee7ca74ad89a50

See more details on using hashes here.

File details

Details for the file edsnlp-0.6.1-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.6.1-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 fbfd8600f84daa766e18168adf8fd7ba9dacb11c56fb36d50896daad0d269ca9
MD5 b79ee0be0c08ba6cbfd5869ca643b48d
BLAKE2b-256 ba7e4fa5bf23f1a8e177a75a30ce87daa944215f0023b73cfad7674bfc4ec928

See more details on using hashes here.

File details

Details for the file edsnlp-0.6.1-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: edsnlp-0.6.1-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 1.1 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for edsnlp-0.6.1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 9c9fdce1bbca1201f5119e7c8aca8234670a6e3c546bc1b2b34d30cb8dd3f863
MD5 1379c07211be787a266431b06086caab
BLAKE2b-256 e4425507b1142bb17db2f2ad7df3d0a7ec4354184fc68c9f3cffb78c6696284b

See more details on using hashes here.

File details

Details for the file edsnlp-0.6.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.6.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ae9a3b458bd6c60e7793b733a6962a53ec8cac3cd46409b9a3e3fa113df07e66
MD5 d9e2a86fd4227b6cb25087a5361e84aa
BLAKE2b-256 b00a8a515757ee3e2db5bf789373a4f1c0410fba699fdc206442a5ec91d39897

See more details on using hashes here.

File details

Details for the file edsnlp-0.6.1-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.6.1-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d8f6eef59e56e59ead53478749cc60999105839a10078d5bcff59094f15eb646
MD5 9f5811e843f4f5a8ed135be70e27ff42
BLAKE2b-256 e5cf2db85701cb2333702c50ba0294056adacdace9d4517669d20d709ab53d7e

See more details on using hashes here.

File details

Details for the file edsnlp-0.6.1-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: edsnlp-0.6.1-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 1.1 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for edsnlp-0.6.1-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 55f951fc58c4bf92e52c06e1f5928fa74fa1a9dc585536ca893f34471cbd839e
MD5 c3d060e954ae54b4ebb7a168bfbbe7e3
BLAKE2b-256 4643540aee9f87b3999c3a7e995951fe45404370d8e4885ce36f6a8e4272b961

See more details on using hashes here.

File details

Details for the file edsnlp-0.6.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.6.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3421313b46e2dd2a1243d66184dda2602a5d4d3ee26e0847aa42a6feb90eab1e
MD5 10f32d26c410115e4149b4df3634e97d
BLAKE2b-256 bd0d7c9d74b9c88ac46085a8545899ea9928e37eecbe8c7d8abf341eb81ac32b

See more details on using hashes here.

File details

Details for the file edsnlp-0.6.1-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.6.1-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c61cde2730b40a39b10c8906aa101951ac02321f7ded25351933aa2ec9979f74
MD5 bb80d67e125ecd329158874ef5e6dc55
BLAKE2b-256 776e33555ff1bc371034f3579363c0c518231f7be3ff6875c6466b65c3640897

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page