Skip to main content

A set of spaCy components to extract information from clinical notes written in French.

Project description

Tests Documentation PyPI Demo Codecov DOI

EDS-NLP

EDS-NLP provides a set of spaCy components that are used to extract information from clinical notes written in French.

Check out the interactive demo!

If it's your first time with spaCy, we recommend you familiarise yourself with some of their key concepts by looking at the "spaCy 101" page in the documentation.

Quick start

Installation

You can install EDS-NLP via pip:

pip install edsnlp

We recommend pinning the library version in your projects, or use a strict package manager like Poetry.

pip install edsnlp==0.7.0

A first pipeline

Once you've installed the library, let's begin with a very simple example that extracts mentions of COVID19 in a text, and detects whether they are negated.

import spacy

nlp = spacy.blank("fr")

terms = dict(
    covid=["covid", "coronavirus"],
)

# Sentencizer component, needed for negation detection
nlp.add_pipe("eds.sentences")
# Matcher component
nlp.add_pipe("eds.matcher", config=dict(terms=terms))
# Negation detection
nlp.add_pipe("eds.negation")

# Process your text in one call !
doc = nlp("Le patient est atteint de covid")

doc.ents
# Out: (covid,)

doc.ents[0]._.negation
# Out: False

Documentation

Go to the documentation for more information.

Disclaimer

The performances of an extraction pipeline may depend on the population and documents that are considered.

Contributing to EDS-NLP

We welcome contributions ! Fork the project and propose a pull request. Take a look at the dedicated page for detail.

Citation

If you use EDS-NLP, please cite us as below.

@misc{edsnlp,
  author = {Dura, Basile and Wajsburt, Perceval and Petit-Jean, Thomas and Cohen, Ariel and Jean, Charline and Bey, Romain},
  doi    = {10.5281/zenodo.6424993},
  title  = {EDS-NLP: efficient information extraction from French clinical notes},
  url    = {http://aphp.github.io/edsnlp}
}

Acknowledgement

We would like to thank Assistance Publique – Hôpitaux de Paris and AP-HP Foundation for funding this project.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

edsnlp-0.7.0.tar.gz (1.3 MB view details)

Uploaded Source

Built Distributions

edsnlp-0.7.0-cp310-cp310-win_amd64.whl (1.2 MB view details)

Uploaded CPython 3.10 Windows x86-64

edsnlp-0.7.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

edsnlp-0.7.0-cp310-cp310-macosx_10_9_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

edsnlp-0.7.0-cp39-cp39-win_amd64.whl (1.2 MB view details)

Uploaded CPython 3.9 Windows x86-64

edsnlp-0.7.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

edsnlp-0.7.0-cp39-cp39-macosx_10_9_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

edsnlp-0.7.0-cp38-cp38-win_amd64.whl (1.2 MB view details)

Uploaded CPython 3.8 Windows x86-64

edsnlp-0.7.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

edsnlp-0.7.0-cp38-cp38-macosx_10_9_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

edsnlp-0.7.0-cp37-cp37m-win_amd64.whl (1.2 MB view details)

Uploaded CPython 3.7m Windows x86-64

edsnlp-0.7.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

edsnlp-0.7.0-cp37-cp37m-macosx_10_9_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file edsnlp-0.7.0.tar.gz.

File metadata

  • Download URL: edsnlp-0.7.0.tar.gz
  • Upload date:
  • Size: 1.3 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for edsnlp-0.7.0.tar.gz
Algorithm Hash digest
SHA256 d024f66f04cfaa519cda02903beb779d1d5aaa407791e4157347beec939eb48a
MD5 ded1cc50b172a358819873cc26371cea
BLAKE2b-256 ec0ebafde6cab89ba6d3ae2aa6813cc3274735fac4d73b84c6c5ff95e7840376

See more details on using hashes here.

File details

Details for the file edsnlp-0.7.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: edsnlp-0.7.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 1.2 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for edsnlp-0.7.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 c3c1889b8c3a9af8abe4e31e8b61b576535bf99756674ff8df6022a44bb9b556
MD5 6aa940d7569d46d6d55f8a7761f990f0
BLAKE2b-256 3da748ffbf7a48cc5ef4d9fe885c941a67658fd8c4d2a75ac0b904e31e8888c2

See more details on using hashes here.

File details

Details for the file edsnlp-0.7.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.7.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 66ca18728fa8b5125ba520722926adb566ced1f0f4dce1ce1a7296cf4838329e
MD5 dbd9833499011d3a9096245ff9f7b6a8
BLAKE2b-256 8feb2254a3e814b7f52553b691b6d9c1dcd1727e9cb5ca8c93cbe0988b6c5a58

See more details on using hashes here.

File details

Details for the file edsnlp-0.7.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.7.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 540ea0347337b8fb002a707abb6777c66a58aaaf4f788d36e3895a7ab8a5055a
MD5 71424435e5765820d188238963d1b50c
BLAKE2b-256 3f81f96176327dd1f20db2d344c7e6f39f6f4faa93c6d3a9e2dc757d09886cca

See more details on using hashes here.

File details

Details for the file edsnlp-0.7.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: edsnlp-0.7.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 1.2 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for edsnlp-0.7.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 5d5cd2042f357170a534ef6bd1973d9f0c8286e9aa4767822fe8b92eb941d591
MD5 76cbdd8069d872481db16cc1822e0660
BLAKE2b-256 5a2af411dfd495e831c1bea0e855af17b5992500fbd427d2590926248578e8f2

See more details on using hashes here.

File details

Details for the file edsnlp-0.7.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.7.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4439d95521e9fbd5483670b46b737975be994db57176bcceb0424cc0a4075e94
MD5 4aab7ea25ff636b3065565bcf5c6d5fd
BLAKE2b-256 b3e3dedd7a6ebf40228708b924d5417b510999d98a87280a4404714e7d7007d1

See more details on using hashes here.

File details

Details for the file edsnlp-0.7.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.7.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 282fe2cf9da7c2b9686aaaf6555c688dfd1f8768749e60871ff00fe3a5722883
MD5 a21a83ebf8f6bc0938dd6ae1c561c07d
BLAKE2b-256 3b9d4a5a230c1be622e79d72c13de7453b82daa9cbb5172b93f9eb5498d370d3

See more details on using hashes here.

File details

Details for the file edsnlp-0.7.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: edsnlp-0.7.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 1.2 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for edsnlp-0.7.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 ed1a2a787f64620b84c43cde4659a384dfe6bc3684ee930dcd2950f7f6a39242
MD5 d0f2368f3cf9fecf9ca50aaf3f86aa07
BLAKE2b-256 e633c3fcc1dcdc6dfda77b98613145430b6d03ef57c893628f4102eea7b7ba52

See more details on using hashes here.

File details

Details for the file edsnlp-0.7.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.7.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ac2e5942ced314d1570366be57837eee3acd1bb505f376bdda72422fc459f0eb
MD5 768825fddc71906cc38af15b363c9abb
BLAKE2b-256 8337e5bfac1ed2b58f912b99633eaa8409b7020a9bea632fb936372ae1102ee6

See more details on using hashes here.

File details

Details for the file edsnlp-0.7.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.7.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d9f0ca2f4b3e3ca204565f70327bd0a2bb418769bb9e13a5b977c603e478f338
MD5 fd42cc0dd2e43d76b8e5c35da2444778
BLAKE2b-256 b76aa01179a9813d4f7718a6bb9dec02b07d9723a2d76b91818abd2eab75126a

See more details on using hashes here.

File details

Details for the file edsnlp-0.7.0-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: edsnlp-0.7.0-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 1.2 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for edsnlp-0.7.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 a5703cd89ab78aa5dd4b9e9bb1707e11ff6c79d408d86da18a6d7f601bb7652e
MD5 fe4dc600471287cd22bca978edc62a42
BLAKE2b-256 401b6918227754abde364c27bc0d0f524106c678a54538d1d4558ac553168eb9

See more details on using hashes here.

File details

Details for the file edsnlp-0.7.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.7.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 112e5d4992bb45a3992923f7efd5a9c542d3bce468cbb8359ff21b18741c1ef9
MD5 b638f2c40a2612f29bb76bb5932f150f
BLAKE2b-256 cb98ed9a13406c01873ccb7eabce3701650d846b7c00e942d20149222d56773b

See more details on using hashes here.

File details

Details for the file edsnlp-0.7.0-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.7.0-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 849b63e3bdd80868e14959837f36c052e53e665244c14eb306c5f36c5572701a
MD5 ac4f2923b37b376e5a40f6a437c0abe0
BLAKE2b-256 5f89c70cd970059703cd25721f6c86ab7d5655f59b045feedfab020e82bfa326

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page